DNA conformational change embrace ultraviolet photolysis: A dual-mode sensing platform for electrochemical and fluorescent signaling.

Anal Chim Acta

Department of Chemistry, College of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai City, 519087, Guangdong Province, China; Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China. Electronic address:

Published: March 2024

We developed a dual-mode biosensor that utilizes DNA conformational changes and ultraviolet photolysis for electrochemical (EC) and fluorescence (FL) detection. In this study, a stem-loop-structured carcinoembryonic antigen (CEA) aptamer was modified on an Au electrode, and this aptamer contained a redox-labeled methylene blue (MB), short-chain DNA with a 6-carboxylic fluorescein (FAM) and a PC linker that can be cleaved by ultraviolet light. Subsequently, CEA and CEA antibody-modified upconversion nanoparticle bioconjugates (CEA-Ab@UCNPs) were added. In the presence of CEA, Ab@UCNPs can bind CEA and push the MB which was originally close to the electrode surface, away from the electrode surface, resulting in a reduced redox current. Under irradiation with a 980 nm laser, the UCNPs emit ultraviolet light, leading to photocleavage of the PC linker and the release of FAM for FL sensing. Under optimal conditions, the EC and FL modes showed good responses to CEA within 0.01-50 ng/mL and 0.1-80 ng/mL, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2024.342222DOI Listing

Publication Analysis

Top Keywords

dna conformational
8
ultraviolet photolysis
8
ultraviolet light
8
electrode surface
8
cea
6
conformational change
4
change embrace
4
ultraviolet
4
embrace ultraviolet
4
photolysis dual-mode
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!