Objectives: To evaluate belinostat's (PXD101) activity on MCF-7 breast cancer stem cells (CSCs) via Wnt, Notch, and Hedgehog.
Methods: This research study was carried out at the Department of Medical Biology, Necmettin Erbakan University, Konya, Turkey, from June 2017 to July 2019. The effect of PXD101 on MCF-7 cell viability was determined by cell proliferation kit (XTT). Following belinostat treatment, CD44+/CD24- MCF-7 CSCs were isolated by FACS. Ribonucleic acid isolation and copy-deoxyribonucleic acid synthesis were carried out using HEK-293 cells, MCF-7 cells, and MCF-7 CSCs. Expression changes of metastasis-related genes, Wnt, Hedgehog, Notch, and stem cell markers were analysed by quantitative polymerase chain reaction. The IC50 in MCF-7 cancer cells was 5 μM for 48 hours. The FACS analysis indicated that 2% of the MCF-7 cancer cells were CSCs. Following belinostat treatment, the MCF-7 cell count decreased by 44%, and the MCF-7 CD44+/CD24- CSC count decreased by 66%.
Results: Belinostat treatment reduced the expression of metastasis, Wnt, Notch, Hedgehog, and stem cell marker genes.
Conclusion: Belinostat has a potential effect on the differentiation and self-renewal of breast CSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11115415 | PMC |
http://dx.doi.org/10.15537/smj.2024.45.2.20230478 | DOI Listing |
J Pers Med
December 2024
Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium.
Chronic kidney disease (CKD) is a chronic disorder characterized by kidney fibrosis and extracellular matrix accumulation that can lead to end-stage kidney disease. Epithelial-to-mesenchymal transition, inflammatory cytokines, the TGF-β pathway, Wnt/β-catenin signaling, the Notch pathway, and the NF-κB pathway all play crucial roles in the progression of fibrosis. Current medications, such as renin-angiotensin-aldosterone system inhibitors, try to delay disease development but do not stop or reverse fibrosis.
View Article and Find Full Text PDFPharmacol Res
December 2024
Pathologie, School for Cardiovascular Diseases, Fac. Health, Medicine and Life Sciences, Maastricht university, MUMC, the Netherland. Electronic address:
Wnt and Notch signaling pathways play crucial roles in the development and homeostasis of the cardiovascular system. These pathways regulate important cellular processes in cardiomyocytes, endothelial cells, and smooth muscle cells, which are the key cell types involved in the structure and function of the heart and vasculature. During embryonic development, Wnt and Notch signaling coordinate cell fate specification, proliferation, differentiation, and morphogenesis of the heart and blood vessels.
View Article and Find Full Text PDFInt J Pharm
December 2024
School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India. Electronic address:
Wounds that represent one of the most critical complications can occur in individuals suffering from diabetes mellitus, and results in the need for hospitalisation and, in severe cases, require amputation. This condition is primarily characterized by infections, persistent inflammation, and delayed healing processes, which exacerbate the overall health of the patients. As per the standard mechanism, signalling pathways such as PI3K/AKT, HIF-1, TGF-β, Notch, Wnt/β-Cat, NF-κB, JAK/STAT, TLR, and Nrf2 play major roles in inflammatory, proliferative and remodelling phases of wound healing.
View Article and Find Full Text PDFMol Biol Rep
December 2024
State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key downstream effectors of the Hippo pathway that regulate organ size, tissue homeostasis, and cancer development. YAP/TAZ play crucial regulatory roles in organ growth, cell proliferation, cell renewal, and regeneration. Mechanistically, YAP/TAZ influence the occurrence and progression of liver regeneration (LR) through various signaling pathways, including Notch, Wnt/β-catenin, TGF-β/Smad.
View Article and Find Full Text PDFSignal Transduct Target Ther
December 2024
Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!