The advancement in carbon dioxide (CO) sequestration technology has received significant attention due to the adverse effects of CO on climate. The mitigation of the adverse effects of CO can be accomplished through its conversion into useful products or renewable fuels. In this regard, microalgae is a promising candidate due to its high photosynthesis efficiency, sustainability, and eco-friendly nature. Microalgae utilizes CO in the process of photosynthesis and generates biomass that can be utilized to produce various valuable products such as supplements, chemicals, cosmetics, biofuels, and other value-added products. However, at present microalgae cultivation is still restricted to producing value-added products due to high cultivation costs and lower CO sequestration efficiency of algal strains. Therefore, it is very crucial to develop novel techniques that can be cost-effective and enhance microalgal carbon sequestration efficiency. The main aim of the present manuscript is to explain how to optimize microalgal CO sequestration, integrate valuable product generation, and explore novel techniques like genetic manipulations, phytohormones, quantum dots, and AI tools to enhance the efficiency of CO sequestration. Additionally, this review provides an overview of the mass flow of different microalgae and their biorefinery, life cycle assessment (LCA) for achieving net-zero CO emissions, and the advantages, challenges, and future perspectives of current technologies. All of the reviewed approaches efficiently enhance microalgal CO sequestration and integrate value-added compound production, creating a green and economically profitable process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2024.118397 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!