Marine bacteria can adapt to various extreme environments by the production of extracellular polymeric substances (EPS). Throughout this investigation, impact of variable pCO levels on the metabolic activity and physiochemical modulation in EPS matrix of marine bacterium Pseudomonas sihuiensis - BFB-6S was evaluated using a fluorescence microscope, excitation-emission matrix (EEM), 2D-Fourier transform infrared correlation spectroscopy (2D-ATR-FTIR-COS), FT-NMR and TGA-DSC. From the results at higher pCO levels, there was a substantial reduction in EPS production by 58-62.8 % (DW). In addition to the biochemical composition of EPS, reduction in carbohydrates (8.7-47.6 %), protein (7.1-91.5 %), and lipids (16.9-68.6 %) content were observed at higher pCO levels. Functional discrepancies of fluorophores (tyrosine and tryptophan-like) in EPS, speckled differently in response to variable pCO. The 2D-ATR-FTIR-COS analysis revealed functional amides (CN, CC, CO bending, -NH bending in amines) of EPS were preferentially altered, which led to the domination of polysaccharides relevant functional groups at higher pCO. H NMR analysis of EPS confirmed the absence of chemical signals from H-C-COOH of proteins, α, β anomeric protons, and acetyl group relevant region at higher pCO levels. These findings can contribute new insights into the influence of pCO on the adaptation of marine microbes in future ocean acidification scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.129860DOI Listing

Publication Analysis

Top Keywords

pco levels
16
higher pco
16
marine bacterium
8
bacterium pseudomonas
8
pco
8
extracellular polymeric
8
polymeric substances
8
physiochemical modulation
8
variable pco
8
eps
7

Similar Publications

The tambaqui (Colossoma macropomum, G. Cuvier 1818) thrives both in the ion-poor waters of the Amazon and in commercial aquaculture. In both, environmental conditions can be harsh due to low ion levels, occasional high salt challenges (in aquaculture), low pH, extreme PO levels (hypoxia and hyperoxia), high PCO levels (hypercapnia), high ammonia levels (in aquaculture), and high and low temperatures.

View Article and Find Full Text PDF

Inflow-modulated inputs of dissolved organic matter fuel carbon dioxide emissions from a large hyper-eutrophic lake.

Water Res

December 2024

Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé, building 1131, DK-8000, Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing, 100190, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and implementation, Middle East Technical University, Ankara, 06800, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.

Terrestrial dissolved organic matter (DOM) is potentially reactive and, upon entering lake ecosystems, can be readily degraded to low-molecular-weight organic matter and dissolved CO. However, to date, there has been limited research on the links between long-term variation in the composition of DOM and CO emissions from lakes. Lake Taihu is a large, shallow, and hyper-eutrophic lake where DOM composition is strongly influenced by inputs from the rivers draining cultivated and urbanized landscapes.

View Article and Find Full Text PDF

ICEmST contributes to colonization of Salmonella in the intestine of piglets.

Sci Rep

December 2024

Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.

Salmonella enterica serovar 4,[5],12:i:- sequence type 34 (ST34) has recently become a global concern for public and animal health. The acquisition of mobile genetic element ICEmST, which contains two copper tolerance gene clusters, cus and pco, influences the epidemic success of this clone. Copper is used as a feed additive in swine at levels that potentially lead to selection pressure for Enterobacteriaceae; however, it remains unclear whether the copper tolerance system of ICEmST functions in vivo.

View Article and Find Full Text PDF

Cellular and genetic responses of Phaeodactylum tricornutum to seawater acidification and copper exposure.

Mar Environ Res

December 2024

Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study, Shenzhen University, Shenzhen, China. Electronic address:

The ongoing decline in seawater pH, driven by the absorption of excess atmospheric CO, represents a major environmental issue. This reduction in pH can interact with metal pollution, resulting in complex effects on marine phytoplankton. In this study, we examined the combined impacts of seawater acidification and copper (Cu) exposure on the marine diatom Phaeodactylum tricornutum.

View Article and Find Full Text PDF

Background: The most prevalent endocrine disorder affecting women is PCOS. Programmed death of ovarian cells has yet to be elucidated. Ferroptosis is a kind of iron-dependent necrosis featured by significantly Fe-dependent lipid peroxidation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!