Amyloid beta (Aβ) peptides and copper (Cu) ions are each involved in critical biological processes including antimicrobial activity, regulation of synaptic function, angiogenesis, and others. Aβ binds to Cu and may play a role in Cu trafficking. Aβ peptides exist in isoforms that vary at their C-and N-termini; variation at the N-terminal sequence affects Cu binding affinity, structure, and redox activity by providing different sets of coordinating groups to the metal ion. Several N-terminal isoforms have been detected in human brain tissues including Aβ, Aβ, pEAβ, Aβ, Aβ and pEAβ (where pE denotes an N-terminal pyroglutamic acid). Several previous works have individually investigated the affinity and structure of Cu(I) bound to some of these isoforms' metal binding domains. However, the disparately reported values are apparent constants collected under different sets of conditions, and thus an integrated comparison cannot be made. The work presented here provides the Cu(I) coordination structure and binding affinities of these six biologically relevant Aβ isoforms determined in parallel using model peptides of the Aβ metal binding domains (Aβ, Aβ, pEAβ, Aβ, Aβ and pEAβ). The binding affinities of Cu(I)-Aβ complexes were measured using solution competition with ferrozine (Fz) and bicinchoninic acid (BCA), two colorimetric Cu(I) indicators in common use. The Cu(I) coordination structures were characterized by X-ray absorption spectroscopy. The data presented here facilitate comparison of the isoforms' Cu-binding interactions and contribute to our understanding of the role of Aβ peptides as copper chelators in healthy and diseased brains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2024.112480 | DOI Listing |
J Biol Chem
February 2023
Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA. Electronic address:
The Saccharomyces cerevisiae Yta7 is a chromatin remodeler harboring a histone-interacting bromodomain (BRD) and two AAA+ modules. It is not well understood how Yta7 recognizes the histone H3 tail to promote nucleosome disassembly for DNA replication or RNA transcription. By cryo-EM analysis, here we show that Yta7 assembles a three-tiered hexamer with a top BRD tier, a middle AAA1 tier, and a bottom AAA2 tier.
View Article and Find Full Text PDFJ Environ Manage
February 2022
Department of Civil Engineering, Lassonde School of Engineering, York University, ON, M3J1P3, Canada. Electronic address:
The interest in the A-stage of the adsorption/bio-oxidation (A/B) process has considerably increased due to its capacity of carbon redirection to the solids stream. Induced by its flexible and compact design, the Alternating Activated Adsorption (AAA) was recently implemented in full-scale as an alternative A-stage system. However, the literature on such a system is scarce.
View Article and Find Full Text PDFCell Rep
June 2019
Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK. Electronic address:
AAA+ proteins form asymmetric hexameric rings that hydrolyze ATP and thread substrate proteins through a central channel via mobile substrate-binding pore loops. Understanding how ATPase and threading activities are regulated and intertwined is key to understanding the AAA+ protein mechanism. We studied the disaggregase ClpB, which contains tandem ATPase domains (AAA1, AAA2) and shifts between low and high ATPase and threading activities.
View Article and Find Full Text PDFElife
November 2018
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
The biogenesis of 60S ribosomal subunits is initiated in the nucleus where rRNAs and proteins form pre-60S particles. These pre-60S particles mature by transiently interacting with various assembly factors. The ~5000 amino-acid AAA+ ATPase Rea1 (or Midasin) generates force to mechanically remove assembly factors from pre-60S particles, which promotes their export to the cytosol.
View Article and Find Full Text PDFJ Biol Chem
December 2018
From the Department of Biology, Faculty of Science and Engineering and
ClpB, a bacterial homologue of heat shock protein 104 (Hsp104), can disentangle aggregated proteins with the help of the DnaK, a bacterial Hsp70, and its co-factors. As a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA), ClpB forms a hexameric ring structure, with each protomer containing two AAA modules, AAA1 and AAA2. A long coiled-coil middle domain (MD) is present in the C-terminal region of the AAA1 and surrounds the main body of the ring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!