The reactive oxygen species (ROS) photochemically generated from natural iron minerals have gained significant attention. Amidst the previous studies on the impact of heavy metal ions on ROS generation, our study addresses the role of the anion Cr(VI), with its intrinsic photoactivity, in influencing ROS photochemical generation with the co-presence of minerals. We investigated the transformation of inorganic/organic pollutants (Cr(VI) and benzoic acid) at the ferrihydrite interface, considering sunlight-mediated conversion processes (300-1000 nm). Increased photochemical reactivity of ferrihydrite was observed in the presence of aqueous Cr(VI), acting as a photosensitizer. Meanwhile, a positive correlation between hydroxyl radical (OH) production and concentrations of aqueous Cr(VI) was observed, with a 650% increase of OH generation at 50 mg L Cr(VI) compared to systems without Cr(VI). Our photochemical batch experiments elucidated three potential pathways for OH photochemical production under varying wet chemistry conditions: (1) ferrihydrite hole-mediated pathway, (2) chromium intermediate O-mediated pathway, and (3) chromium intermediates Cr-mediated pathway. Notably, even in the visible region (> 425 nm), the promotion of aqueous Cr(VI) on OH accumulation was observed in the presence of ferrihydrite and TiO suspensions, attributed to Cr(VI) photosensitization at the mineral interface. This study sheds light on the overlooked role of aqueous Cr(VI) in the photochemical reactivity of minerals, thereby enhancing our understanding of pollutant fate in acid mining-impacted environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.133557 | DOI Listing |
Mikrochim Acta
January 2025
Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
The hydrothermal synthesis is presented of copper-doped carbon dots (Cu-CDs) from citric acid, urea, and copper chloride, resulting in blue-fluorescent particles with stable emission at 438 nm when excited at 340 nm. Through comprehensive spectroscopic and microscopic characterization (FTIR, XPS, UV, and HRTEM), the Cu-CDs demonstrated remarkable stability across varying pH levels, ionic strengths, temperatures, and UV exposure. Notably, Cu-CDs exhibit ultra-sensitive and selective detection of hexavalent chromium [Cr(VI)] ions in aqueous environments driven by fluorescence quenching.
View Article and Find Full Text PDFPLoS One
December 2024
School of Design, Informatics and Business, Abertay University, Dundee, United Kingdom.
The reuse of electro-coagulated sludge as an adsorbent for Cr(VI) ion reduction was investigated in this study. Electro-coagulated sludge was obtained during the removal of citric acid wastewater by the electrocoagulation process. The following parameters were optimized for Cr(VI) reduction: pH (5-7), initial Cr(VI) concentration (10-50 mg/L), contact time (10-45 min), and adsorbent dosage (0.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mining Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran.
To tackle the challenges of increasing the efficiency of photocatalysts, a ternary magnetic heterojunction photocatalyst containing spinel cobalt and zinc ferrites, and zeolite (CZZ) was designed and fabricated. The physicochemical properties of the novel photocatalyst were verified using characterization techniques such as XRD, FT-IR, FE-SEM, EDS mapping, N adsorption-desorption, VSM, PL, and UV-Vis DRS. The CZZ photocatalyst exhibited a significant Cr (VI) reduction rate of 0.
View Article and Find Full Text PDFGels
November 2024
Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, km 9 vía al Aeropuerto, Manizales 170003, Colombia.
The tanning industry is among the most environmentally harmful activities globally due to the pollution of lakes and rivers from its effluents. Hexavalent chromium, a metal in tannery effluents, has adverse effects on human health and ecosystems, requiring the development of removal techniques. This study assessed the efficacy of organobentonite/alginate hydrogel beads in removing Cr(VI) from a fixed-bed adsorption column system.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Energy Power & Mechanical Engineering, North China Electric Power University, Baoding 071003, Hebei, China.
Cr(VI) can cause great harm to human beings and the environment and often exists in the form of HCrO̅ in aqueous environments. The adsorption characteristics of HCrO̅ on nitrogen-doped and iron-nickel-modified carbon substrates were systematically investigated using first principles. The properties of electron transfer and orbital hybridization of the substrates and HCrO̅ during the adsorption process were analyzed by electron deformation density and density of states.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!