In the present study, a graphical user interface (GUI) toolkit has been developed to analyze the thermoluminescence (TL) glow-curve and evaluate the trapping parameters using TL expression based on the one-trap one-recombination model. The basic idea of the deconvolution analysis in the developed toolkit is based on performing a sequence of successful fits, where the information provided by each fit is used by the next fit until the deconvolution of the entire glow curve approaches an optimum solution. The starting values and ranges of the fitting parameters can be controlled and adjusted to improve the deconvolution analysis of complex structure glow curves. The designed toolkit is also supported by the background-subtraction option to improve the analysis at low irradiation dose levels. The expanded uncertainty at the 95 % confidence level of the fitted trapping parameters is also provided. All the evaluations performed using the designed toolkit are allowed to be extracted into an Excel spreadsheet. The TL-SDA toolkit can be freely downloaded from: TLSDA_v1 - File Exchange - MATLAB Central (https://www.mathworks.com/matlabcentral/fileexchange/154136-tlsda_v1-1).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apradiso.2024.111202 | DOI Listing |
Pilot Feasibility Stud
January 2025
Advocate Christ Medical Center, Advocate Health, Oak Lawn, IL, USA.
Background: Hypertension is the leading risk factor for cardiovascular disease (CVD). Despite advances in blood pressure management, significant racial and ethnic disparities persist, resulting in higher risks of stroke, heart disease, and mortality among non-White populations. Self-measured blood pressure (SMBP) monitoring, also known as home blood pressure monitoring, has shown promise in improving blood pressure control, especially when combined with feedback from healthcare providers.
View Article and Find Full Text PDFBMJ Open
December 2024
Centre for Rehabilitation and Ageing Research, University of Nottingham, Nottingham, UK.
Objective: To codesign and develop an intervention to promote participation and well-being in children and young people (CYP) with acquired brain injury (ABI) and family caregivers.
Design: A complex intervention development study including a scoping review, mixed-methods study, co-design workshop and theoretical modelling.
Setting: Community-dwelling participants in one geographical region of the UK.
Heliyon
January 2025
Institute of Biology, Faculty of Sciences, University of Pécs, H-7624, Pécs, Hungary.
In the global effort to discover or design new effective antibiotics to fight infectious diseases, the increasingly available multi-omics data with novel bioinformatics tools open up new horizons for the exploration of the genetic potential of bacteria to synthesize bioactive secondary metabolites. Rare actinomycetes are a prolific source of structurally diverse secondary metabolites that exhibit remarkable clinical and industrial importance. Recently several excellent genome mining tools have been available for identifying biosynthetic gene clusters, however in cases of poor-quality sequences and inappropriate genome assembly, these tools are not always able to identify the corresponding gene clusters.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, QLD 4072, Australia.
Regulatory genes are critical determinants of cellular responses in development and disease, but standard RNA sequencing (RNA-seq) analysis workflows, such as differential expression analysis, have significant limitations in revealing the regulatory basis of cell identity and function. To address this challenge, we present the TRIAGE R package, a toolkit specifically designed to analyze regulatory elements in both bulk and single-cell RNA-seq datasets. The package is built upon TRIAGE methods, which leverage consortium-level H3K27me3 data to enrich for cell-type-specific regulatory regions.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
Spinal cord injury (SCI) impairs the central nervous system and induces the myelin-sheath-deterioration because of reactive oxygen species (ROS), further hindering the recovery of function. Herein, the simultaneously emergency treatment and dynamic luminescence severity assessment (SETLSA) strategy is designed for SCI based on cerium (Ce)-doped upconversion antioxidant nanoenzymes (Ce@UCNP-BCH). Ce@UCNP-BCH can not only efficiently eliminate the SCI localized ROS, but dynamically monitor the oxidative state in the SCI repair process using a ratiometric luminescence signal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!