Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The coupling of biological organisms with electrodes enables the development of sustainable, low cost, and potentially self-sustained biosensors. A critical aspect is to obtain portable bioelectrodes where the biological material is immobilized on the electrode surface to be utilized on demand. Herein, we developed an approach for the rapid entrapment and immobilization of metabolically active yeast cells in a biocompatible polydopamine layer, which does not require a separate and time-consuming synthesis. The reported approach allows obtaining the "electrical wire" of intact and active yeast cells with resulting current generation from glucose oxidation. Additionally, the electrochemical performance of the biohybrid yeast-based system has been characterized in the presence of CuSO, a widely used pesticide, in the environmentally relevant concentration range of 20-100 μM. The system enabled the rapid preliminary monitoring of the contaminant based on variations in current generation, with a limit of detection of 12.5 μM CuSO. The present approach for the facile preparation of portable yeast-based electrochemical biosensors paves the way for the future development of sustainable systems for environmental monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2024.108658 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!