Exposure to brief, intense sound can produce profound changes in the auditory system, from the internal structure of inner hair cells to reduced synaptic connections between the auditory nerves and the inner hair cells. Moreover, noisy environments can also lead to alterations in the auditory nerve or to processing changes in the auditory midbrain, all without affecting hearing thresholds. This so-called hidden hearing loss (HHL) has been shown in tinnitus patients and has been posited to account for hearing difficulties in noisy environments. However, much of the neuronal research thus far has investigated how HHL affects the response characteristics of individual fibres in the auditory nerve, as opposed to higher stations in the auditory pathway. Human models show that the auditory nerve encodes sound stochastically. Therefore, a sufficient reduction in nerve fibres could result in lowering the sampling of the acoustic scene below the minimum rate necessary to fully encode the scene, thus reducing the efficacy of sound encoding. Here, we examine how HHL affects the responses to frequency and intensity of neurons in the inferior colliculus of rats, and the duration and firing rate of those responses. Finally, we examined how shorter stimuli are encoded less effectively by the auditory midbrain than longer stimuli, and how this could lead to a clinical test for HHL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.heares.2024.108963 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Neurobiology, Harvard Medical School, Boston, MA 02115.
The sense of hearing originates in the cochlea, which detects sounds across dynamic sensory environments. Like other peripheral organs, the cochlea is subjected to environmental insults, including loud, damage-inducing sounds. In response to internal and external stimuli, the central nervous system directly modulates cochlear function through olivocochlear neurons (OCNs), which are located in the brainstem and innervate the cochlear sensory epithelium.
View Article and Find Full Text PDFBrain Sci
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.
The brainstem auditory-evoked response (BAER) is an established electrophysiological measure of neural activity from the auditory nerve up to the brain stem. The BAER is used to diagnose abnormalities in auditory pathways and in neurophysiological human and animal research. However, normative data for BAERs in sheep, which represent an adequate large animal model for translational and basic otological research, are lacking.
View Article and Find Full Text PDFAnn Neurosci
January 2025
Government Medical College, Bhadradri, Kothagudem, Telangana, India.
Background: Taylor and Palmer introduced an angiosome (vascular) concept in reconstructive plastic surgery in 1987. The angiosome is considered a segment of a nerve (cranial or peripheral nerve) supplied by a primary source of blood vessels.
Purpose: To observe the arteries supplying the vestibulocochlear nerves (VIII) from the brainstem till their termination.
Iran J Otorhinolaryngol
January 2025
Department of Otorhinolaryngology, Faculty of Medicine, Alexandria University, Egypt.
Introduction: Scleroma is a chronic, specific granulomatous disease that affects the head and neck mucosa. Its common sites are the nose and larynx; however, it might affect other areas. One of the rare sites to be affected is the middle ear and mastoid cavity, for which the term otoscleroma was coined.
View Article and Find Full Text PDFCurr Pain Headache Rep
January 2025
Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.
Purpose Of Review: This review discusses the diagnosis and treatment of nervus intermedius neuralgia (NIN) and identifies gaps in the literature.
Recent Findings: The nervus intermedius is a branch of the facial nerve. NIN presents as a rare neuralgia of this nerve, causing deep ear pain, which may radiate to the auditory canal, auricle, mastoid, soft palate, temple, and angle of the jaw.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!