Porcine infectious pleuropneumonia (PCP) is a severe disease of porcine caused by Actinobacillus pleuropneumoniae (APP). The spread of PCP remains a threat to the porcine farms and has been known to cause severe economic losses. The cAMP receptor protein (CRP) serves as a pivotal player in helping bacteria adapt to shifts in their environment, particularly when facing the challenges posed by bacterial infections. In this study, we investigated the role of CRP in APP. Our results revealed that crp mutant (Δcrp) strains were more sensitive to acidic and osmotic stress resistance and had lower biofilm formation ability than wild-type (WT) strains. Furthermore, the Δcrp strains showed deficiencies in anti-phagocytosis, adhesion, and invasion upon interaction with host cells. Mice infected with the Δcrp strains demonstrated reduced bacterial loads in their lungs compared to those infected with the WT strains. This study reveals the pivotal role of crp gene expression in regulating pleuropneumonia growth, stress resistance, iron utilization, biofilm formation, phagocytosis, adhesion, invasion and colonization. Our discoveries offer novel perspectives on understanding the development and progression of APP infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetmic.2024.110006 | DOI Listing |
JACS Au
December 2024
Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan.
The ability to quench reactive oxygen species (ROS) overproduced in plant chloroplasts under light stress conditions is essential for securing plant photosynthetic performance and agricultural yield. Although genetic engineering can enhance plant stress resistance, its widespread application faces limitations due to challenges in successful transformation across plant species and public acceptance concerns. This study proposes a nontransgenic chemical approach using a designed chimeric peptide that scavenges ROS within plant chloroplasts for managing light stress.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China.
Chinese chestnut ( Blume) is an important economic forest tree species and mainly cultivated in mountainous areas and wastelands, subjecting it to various abiotic stresses. The protein phosphatase 2C (PP2C) genes contributes largely to stress responses in plants. However, the characteristics and functions of genes in remain unknown.
View Article and Find Full Text PDFFront Plant Sci
December 2024
College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou, China.
Roses () are among the most cherished ornamental plants globally, yet they are highly susceptible to infections by , the causative agent of gray mold disease. Here we inoculated the resistant rose variety 'Yellow Leisure Liness' with to investigate its resistance mechanisms against gray mold disease. Through transcriptome sequencing, we identified 578 differentially expressed genes (DEGs) that were significantly upregulated at 24, 48, and 72 hours post-inoculation, with these genes significantly enriched for three defense response-related GO terms.
View Article and Find Full Text PDFHeliyon
December 2024
Soil Science Division, Bangaldesh Wheat and Maize Research Institute, Nashipur, Dinajpur, 5200, Bangladesh.
Heat shock, a transient exposure to high temperatures, is a substantial hazard to rice ( L.) production and sustainability. The objective of this review paper is to summarize the impact of heat shock on rice and explore approaches to mitigate its adverse effects to achieve sustainable production.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Experimental Medicine, University of Salento, Lecce, Italy.
Probiotics, defined as viable microorganisms that enhance host health when consumed through the diet, exert their effects through mechanisms such as strengthening the immune system, enhancing resistance to infectious diseases, and improving tolerance to stressful conditions. Driven by a growing market, research on probiotics in aquaculture is a burgeoning field. However, the identification of new probiotics presents a complex challenge, necessitating careful consideration of both the safety and efficacy of the microorganisms employed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!