Aims: In this narrative review, we have analyzed and synthesized current studies relating to the effects of anti-diabetic drugs on traumatic brain injury (TBI) complications.

Methods: Eligible studies were collected from Scopus, Google Scholar, PubMed, and Cochrane Library for clinical, in-vivo, and in-vitro studies published on the impact of anti-diabetic drugs on TBI.

Results: Traumatic brain injury (TBI) is a serious brain disease that is caused by any type of trauma. The pathophysiology of TBI is not yet fully understood, though physical injury and inflammatory events have been implicated in TBI progression. Several signaling pathways are known to play pivotal roles in TBI injuries, including Nuclear factor erythroid 2-related factor 2 (Nrf2), High mobility group box 1 protein/Nuclear factor kappa B (HMGB1/NF-κB), Adiponectin, Mammalian Target of Rapamycin (mTOR), Toll-Like Receptor (TLR), Wnt/β-catenin, Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT), Nod-like receptor protein3 (NLRP3) inflammasome, Phosphoglycerate kinase 1/Kelch-like ECH-associated protein 1 (PGK1/KEAP1)/Nrf2, and Mitogen-activated protein kinase (MAPK) . Recent studies suggest that oral anti-diabetic drugs such as biguanides, thiazolidinediones (TZDs), sulfonylureas (SUs), sodium-glucose cotransporter-2 inhibitors (SGLT2is), dipeptidyl peptidase-4 inhibitors (DPPIs), meglitinides, and alpha-glucosidase inhibitors (AGIs) could have beneficial effects in the management of TBI complications. These drugs may downregulate the inflammatory pathways and induce antioxidant signaling pathways, thus alleviating complications of TBI.

Conclusion: Based on this comprehensive literature review, antidiabetic medications might be considered in the TBI treatment protocol. However, evidence from clinical trials in patients with TBI is still warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dsx.2024.102949DOI Listing

Publication Analysis

Top Keywords

anti-diabetic drugs
16
traumatic brain
12
brain injury
12
effects anti-diabetic
8
drugs traumatic
8
tbi
8
injury tbi
8
signaling pathways
8
drugs
5
therapeutic effects
4

Similar Publications

Trigonella foenum-graecum L. (fenugreek) seeds are widely used in the preparation of various meals and in traditional health care to treat various disorders and diseases, especially Diabetes mellitus. This study was conducted to investigate the antihyperglycemic and antihyperlipidemic effects of the fenugreek seed extract on fructose-induced diabetic wistar rats.

View Article and Find Full Text PDF

Therapeutic potential inhibitor for dipeptidyl peptidase IV in diabetic type 2: in silico approaches.

3 Biotech

January 2025

Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, 26300 Kuantan, Pahang Malaysia.

Diabetes mellitus (DM) is a metabolic disease marked by an excessive rise in blood sugar (glucose) levels caused by a partial or total absence of insulin production, combined with alterations in the metabolism of proteins, lipids, and carbohydrates. The International Diabetes Federation estimates that 425 million individuals globally had diabetes in 2017 which will be 629 million by 2045. Several medications are used to treat DM, but they have limitations and side effects including weight gain, nausea, vomiting, and damage to blood vessels and kidneys.

View Article and Find Full Text PDF

Introduction Insulin resistance is a fundamental factor in the pathogenesis of polycystic ovarian syndrome (PCOS) and has been found to mediate a close association with obesity and dyslipidemia. While the anti-diabetic and anti-inflammatory properties of fenugreek seed extracts have been demonstrated, research on its anti-hyperlipidemic properties is still in its novice stage, with inconclusive evidence. The present study assessed the impact of fenugreek seed extracts rich in furostanolic saponins (Furocyst) on lipid profiles across different categories of body mass index (BMI) in women with PCOS.

View Article and Find Full Text PDF

Diabetes mellitus is a chronic disease characterized by metabolic defects, including insulin deficiency and resistance. Individuals with diabetes are at increased risk of developing cardiovascular complications, such as atherosclerosis, coronary artery disease, and hypertension. Conventional treatment methods, though effective, are often challenging, costly, and may lead to systemic side effects.

View Article and Find Full Text PDF

Combination of paclitaxel with rosiglitazone induces synergistic cytotoxic effects in ovarian cancer cells.

Sci Rep

December 2024

Department of Zoology, Biomedical Technology, Human Genetics, and WBC, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.

Ovarian cancer is known to be a challenging disease to detect at an early stage and is a major cause of death among women. The current treatment for ovarian cancer typically involves a combination of surgery and the use of drugs such as platinum-based cytotoxic agents, anti-angiogenic drugs, etc. However, current treatment methods are not always effective in preventing the recurrence of ovarian cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!