Among the toxic heavy metals, Ni(II) can cause a variety of side effects on human health, such as allergy, cardiovascular and kidney diseases, lung fibrosis, lung, and nasal cancer. It is therefore critical from a public health and environmental perspective to determine and monitor Ni(II) ions in drinking water, foods, and environmental samples. In this study, a novel selective chemosensor (4-[{[4-(3-Chlorophenyl)-1,3-Thiazol-2-yl]Hydrazono}Methyl]phenyl4-methylBenzene Sulfonate (CTHMBS) was developed for the colorimetric detection of Ni(II) in aqueous medium. The presence of Ni(II) led to a distinct naked-eye color change from yellow to reddish-brown in aqueous solution. To examine the binding mechanism of CTHMBS to Ni(II), UV-vis spectroscopy analysis and DFT calculations were conducted. The detection limit of CTHMBS for Ni(II) was 11.87 µM, and the sensing ability of CTHMBS for Ni(II) was successfully carried out in real water samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s44211-024-00511-z | DOI Listing |
Anal Sci
April 2024
Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
Among the toxic heavy metals, Ni(II) can cause a variety of side effects on human health, such as allergy, cardiovascular and kidney diseases, lung fibrosis, lung, and nasal cancer. It is therefore critical from a public health and environmental perspective to determine and monitor Ni(II) ions in drinking water, foods, and environmental samples. In this study, a novel selective chemosensor (4-[{[4-(3-Chlorophenyl)-1,3-Thiazol-2-yl]Hydrazono}Methyl]phenyl4-methylBenzene Sulfonate (CTHMBS) was developed for the colorimetric detection of Ni(II) in aqueous medium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!