Could the aroma of spices produce a cross-modal enhancement of food saltiness and contribute to reducing salt intake?

J Sci Food Agric

Área de Nutrición y Bromatología, Dpto. de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, España.

Published: May 2024

Background: As a result of its correlation with cardiovascular diseases, salt intake must be reduced. According to multi-sensory integration, aroma plays an important role in saltiness enhancement; this could enable a food's salt content to be reduced without losing acceptance. We therefore studied the effect of three spices, Curcuma longa, Laurus nobilis L. and Petroselinum crispum L., on saltiness enhancement through sensory tests on consumers. This was followed by olfactometric analysis with the aim of relating the effect to the spices' aromatic composition.

Results: According to the odour-induced salty taste enhancement (OISE) mean values, bay leaf and turmeric had the highest effect on saltiness enhancement, at a similar level to dry-cured ham aroma, wherwas parsley had a significantly lower OISE value. Only one odour-active compound (OAC), eugenol, showed a direct correlation with the spices' OISE values. Turmeric primarily had OACs with sweet aroma, whereas bay leaf had more OACs belonging to the spicy-aroma category.

Conclusion: The three spices, turmeric, bay leaf and parsley, investigated in the present study appear to enhance the salty taste of mashed potato with a low salt content. The results suggest that an interaction effect among OACs with different aromatic ranges may exist. Therefore, when the global OAC modified frequency value, grouped according to aroma range, was considered, the sweet range appears to counteract the effect of the spicy aroma on saltiness. © 2024 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.13270DOI Listing

Publication Analysis

Top Keywords

saltiness enhancement
12
bay leaf
12
salt content
8
three spices
8
salty taste
8
oise values
8
aroma
6
enhancement
5
saltiness
5
aroma spices
4

Similar Publications

Odor-induced saltiness enhancement of volatile compounds screened from duck stewed with chili pepper.

Food Chem

January 2025

College of Food Science and Technology, Zhejiang University of Technology, Deqing 313216, China; Zhejiang Key Laboratory of Green, Low-Carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China. Electronic address:

Odor-induced saltiness enhancement (OISE) is thought to be a unique salt reduction technique which capitalizes on olfactory-gustatory interaction. Volatile compounds of stewed duck obtained from orthonasal (no-treatment) and retronasal (saliva-treatment) pathways and their capacity on OISE were analyzed by GC-O-MS and molecular simulation in order to ascertain the role of odors in duck stewed with chili pepper on saltiness enhancement. Totally 17 unique volatile compounds were identified in retronasal pathways.

View Article and Find Full Text PDF

C2H2 Zinc Finger Protein Family Analysis of Identified a Salt-Tolerance Regulator, .

Plants (Basel)

December 2024

College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.

is a representative aromatic species. Wild roses are known for their strong tolerance to highly salty environments, whereas cultivated varieties of roses exhibit lower salt stress tolerance, limiting their development and industrial expansion. Previous studies have shown that C2H2-type zinc finger proteins play a crucial role in plants' resistance to abiotic stresses.

View Article and Find Full Text PDF

A lower salt intake is an effective management strategy for hypertension and ultimately stroke. However, this strategy compromises the taste of food. To overcome this, a taste manipulation strategey using electronic taste simulation (ETS) has been established, but this has only been studied in healthy individuals.

View Article and Find Full Text PDF

Through a quantitative analysis of saltiness perception, favorable enzymatic hydrolysis parameters were confirmed for the preparation of saltiness-enhancing peptide mixtures from . The enzymatic hydrolysate was fractionated into four fractions (F1-F4) by gel chromatography, with F3 exhibiting the strongest saltiness-enhancing effect (22% increase). LC-MS/MS analysis of F3 identified 36 peptides, and their secondary structures and interactions with the TMC4 receptor were examined through circular dichroism spectroscopy and molecular docking.

View Article and Find Full Text PDF

In this study, three fermentation treatments of spontaneous fermentation (SF), direct inoculation of CECA (YF), and inoculation with CECA after addition of dimethyl dicarbonate (YDF) were carried out. Multivariate statistical analysis approved that CECA inoculation significantly influenced the composition of 141 metabolites (15 volatile organic compounds (VOCs) and 126 non-VOCs), mainly consisting of 36 acids and derivatives and 25 lipids and lipid-like molecules. YF and YDF wines exhibited similar correlations with aroma types, while there were differences in the kinds and number of VOCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!