The branched network-driven ion solvating quasi-solid polymer electrolytes (QSPEs) are prepared via one-step photochemical reaction. A poly(ethylene glycol diacrylate) (PEGDA) is combined with an ion-conducting solvate ionic liquid (SIL), where tetraglyme (TEGDME), which acts like interneuron in the human brain and creates branching network points, is mixed with EMIM-NTf and Li-NTf. The QSPE exhibits a unique gyrified morphology, inspired by the cortical surface of human brain, and features well-refined nano-scale ion channels. This human-mimicking method offers excellent ion transport capabilities through a synaptic branched network with high ionic conductivity (σ ≈ 1.8 mS cm at 298 K), high dielectric constant (ε ≈ 125 at 298 K), and strong ion solvation ability, in addition to superior mechanical flexibility. Furthermore, the interdigitated microsupercapacitors (MSCs) based on the QSPE present excellent electrochemical performance of high energy (E  =  5.37 µWh cm) and power density (P  =  2.2 mW cm), long-term cycle stability (≈94% retention after 48 000 cycles), and mechanical stability (>94% retention after continuous bending and compressing deformation). Moreover, these MSC devices have flame-retarding properties and operate effectively in air and water across a wide temperature range (275 to 370 K), offering a promising foundation for high-performance, stable next-generation all-solid-state energy storage devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202308821DOI Listing

Publication Analysis

Top Keywords

synaptic branched
8
branched network
8
quasi-solid polymer
8
human brain
8
bioinspired synaptic
4
network quasi-solid
4
polymer electrolyte
4
electrolyte high-performance
4
high-performance microsupercapacitors
4
microsupercapacitors branched
4

Similar Publications

Systematic Evaluation of Extracellular Coating Matrix on the Differentiation of Human-Induced Pluripotent Stem Cells to Cortical Neurons.

Int J Mol Sci

December 2024

Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Induced pluripotent stem cell (iPSC)-derived neurons (iNs) have been widely used as models of neurodevelopment and neurodegenerative diseases. Coating cell culture vessels with extracellular matrixes (ECMs) gives structural support and facilitates cell communication and differentiation, ultimately enhances neuronal functions. However, the relevance of different ECMs to the natural environment and their impact on neuronal differentiation have not been fully characterized.

View Article and Find Full Text PDF

ATAD1 Regulates Neuronal Development and Synapse Formation Through Tuning Mitochondrial Function.

Int J Mol Sci

December 2024

Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membrane-Less Organelles & Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.

Mitochondrial function is essential for synaptic function. ATAD1, an AAA+ protease involved in mitochondrial quality control, governs fission-fusion dynamics within the organelle. However, the distribution and functional role of ATAD1 in neurons remain poorly understood.

View Article and Find Full Text PDF

Emerging Artificial Synaptic Devices Based on Organic Semiconductors: Molecular Design, Structure and Applications.

ACS Appl Mater Interfaces

January 2025

The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China.

In modern computing, the Von Neumann architecture faces challenges such as the memory bottleneck, hindering efficient processing of large datasets and concurrent programs. Neuromorphic computing, inspired by the brain's architecture, emerges as a promising alternative, offering unparalleled computational power while consuming less energy. Artificial synaptic devices play a crucial role in this paradigm shift.

View Article and Find Full Text PDF

The last pregnancy trimester is critical for fetal brain development but is a vulnerable period if the pregnancy is compromised by fetal growth restriction (FGR). The impact of FGR on the maturational development of neuronal morphology is not known, however, studies in fetal sheep allow longitudinal analysis in a long gestation species. Here we compared hippocampal neuron dendritogenesis in FGR and control fetal sheep at three timepoints equivalent to the third trimester of pregnancy, complemented by magnetic resonance image for brain volume, and electrophysiology for synaptic function.

View Article and Find Full Text PDF

Astroglia are integral to brain development and the emergence of neurodevelopmental disorders. However, studying the pathophysiology of human astroglia using brain organoid models has been hindered by inefficient astrogliogenesis. In this study, we introduce a robust method for generating astroglia-enriched organoids through BMP4 treatment during the neural differentiation phase of organoid development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!