Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: This study aims to evaluate the efficacy and safety of adjunctive hyperbaric oxygen therapy (HBOT) in acute ischaemic stroke (AIS) based on existing evidence.
Methods: We conducted a comprehensive search through April 15, 2023, of seven major databases for randomized controlled trials (RCTs) comparing adjunctive hyperbaric HBOT with non-HBOT (no HBOT or sham HBOT) treatments for AIS. Data extraction and assessment were independently performed by two researchers. The quality of included studies was evaluated using the tool provided by the Cochrane Collaboration. Meta-analysis was conducted using Rev Man 5.3.
Results: A total of 8 studies involving 493 patients were included. The meta-analysis showed no statistically significant differences between HBOT and the control group in terms of NIHSS score (MD = -1.41, 95%CI = -7.41 to 4.58), Barthel index (MD = 8.85, 95%CI = -5.84 to 23.54), TNF-α (MD = -5.78, 95%CI = -19.93 to 8.36), sICAM (MD = -308.47, 95%CI = -844.13 to 13227.19), sVCAM (MD = -122.84, 95%CI = -728.26 to 482.58), sE-selectin (MD = 0.11, 95%CI = -21.86 to 22.08), CRP (MD = -5.76, 95%CI = -15.02 to 3.51), adverse event incidence within ≤ 6 months of follow-up (OR = 0.98, 95%CI = 0.25 to 3.79). However, HBOT showed significant improvement in modified Rankin score (MD = 0.10, 95%CI = 0.03 to 0.17), and adverse event incidence at the end of treatment (OR = 0.42, 95%CI = 0.19 to 0.94) compared to the control group.
Conclusion: While our findings do not support the routine use of HBOT for improving clinical outcomes in AIS, further research is needed to explore its potential efficacy within specific therapeutic windows and for different cerebral occlusion scenarios. Therefore, the possibility of HBOT offering clinical benefits for AIS cannot be entirely ruled out.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10837997 | PMC |
http://dx.doi.org/10.1186/s12883-024-03555-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!