Pyridine motifs are widespread pharmacophores in many drugs. Installing various substituents through pyridine C-H bond functionalization is significant for new drug design and discovery. Developments of late-stage functionalization reactions enrich the strategies for selective functionalization of pyridines. However, late-stage C-H carboxylation of pyridines is a long-standing challenge, especially selectively carboxylation with CO on pyridine motifs. Herein, we describe a practical method for C4-H carboxylation of pyridines via one-pot C-H phosphination and copper-catalyzed carboxylation of the resulted phosphonium salts with CO . The reaction is conducted under mild conditions and compatible with multiple active groups and several pyridine drugs, providing diverse valuable isonicotinic acid compounds, demonstrating the application potential of this strategy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202318572 | DOI Listing |
Org Biomol Chem
January 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu-632014, India.
A porphyrin comprising a carboxyl-functionalized pyridine moiety was synthesized and characterized using H NMR, C NMR, FT-IR, powder-XRD, BET, ICP-MS, SEM and EDAX. The proton level (H = 1.19) and energy band gap (1.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300350, P. R. China.
The practical applications of activation-unstable mesoporous metal-organic frameworks (MOFs) are often constrained by their structural instability. However, enhancing their stability could unlock valuable functionalities. Herein, we stabilized the otherwise unstable, post-activated structure of a novel mesoporous Zr(IV)-MOF, NKM-809, which constructed from a pyridine-containing amphiprotic linker (PPTB).
View Article and Find Full Text PDFBioorg Med Chem
January 2025
School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA. Electronic address:
Six pyridine analogs of (E)-3-(3-(1,2,3,4-tetrahydro-1,1,4,4,6-pentamethylnaphthalen-7-yl)-4-hydroxyphenyl)acrylic acid-or CD3254 (11)-in addition to two novel analogs of 1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-1H-benzo[d][1,2,3]triazole-5-carboxylic acid (CBt-PMN or 23) were prepared and evaluated for selective retinoid-X-receptor (RXR) agonism alongside bexarotene (1), an FDA-approved drug for cutaneous T-cell lymphoma (CTCL). Treatment with 1 often elicits side-effects by disrupting or provoking other RXR-dependent nuclear receptors and cellular pathways. All analogs were assessed through modeling for their ability to bind RXR and then evaluated in human colon and kidney cells employing an RXR-RXR mammalian-2-hybrid (M2H) system and in an RXRE-controlled transcriptional assay.
View Article and Find Full Text PDFDalton Trans
January 2025
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China.
During the oxygen evolution reaction (OER), metal-organic framework (MOF) catalysts undergo structural reorganization, a phenomenon that is still not fully comprehended. Additionally, designing MOFs that undergo structural reconstruction to produce highly active OER catalysts continues to pose significant challenges. Herein, a bimetallic MOF (CoNi-MOF) with carboxylate oxygen and pyridine nitrogen coordination has been synthesized and its reconstruction behavior has been analyzed.
View Article and Find Full Text PDFJ Mol Model
January 2025
School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Haidian District, Ding No.11 Xueyuan Road, Beijing, 100083, People's Republic of China.
Context: Understanding the structural characteristics of coal at the molecular level is fundamental for its effective utilization. To explore the molecular structure characteristic, the long-flame coal from Daliuta (DLT), coking coal from Yaoqiao (YQ), and anthracite from Taixi (TX) were investigated using various techniques such as elemental analysis, Fourier transform infrared spectroscopy, solid-state C nuclear magnetic resonance spectroscopy, and X-ray photoelectron spectroscopy. Based on the structural parameters, the coal molecular model was constructed and optimized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!