Magnetic Resonance Imaging (MRI) is a major medical imaging modality, which is non-invasive and provides unique soft tissue contrast without ionizing radiation. The successful completion of MRI exams critically depends on patient compliance, and, thus patient comfort. The design, appearance and usability of local MRI radiofrequency (RF) coils potentially influences the patients' perception of the exam. However, systematic investigations and empirical evidence for these aspects are missing. A questionnaire specifically evaluating the impact of RF coils on patient comfort in MRI would be a valuable addition to clinical studies comparing the performance of novel flexible RF coils with standard rigid coils. This paper describes the development of such a questionnaire in the scope of a citizen science (CS) initiative conducted with a group of students at the upper secondary school level. In this work, the CS initiative is presented in the format of a case report and its impact on scientific projects and the students' education is outlined. The resulting questionnaire is made available in German and English so as to be directly applicable by researchers working on the clinical evaluation of novel RF coils or the comfort evaluation of specific hardware setups in general.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10837436PMC
http://dx.doi.org/10.1038/s41598-024-53364-xDOI Listing

Publication Analysis

Top Keywords

citizen science
8
radiofrequency coils
8
patient comfort
8
coils
6
mri
5
science approach
4
approach assessing
4
patient
4
assessing patient
4
patient perception
4

Similar Publications

Soil data from the Barbastro-Balaguer gypsum belt, NE Spain.

Data Brief

February 2025

Estación Experimental de Aula Dei, EEAD - CSIC, Ave. Montañana 1005, 50059 Zaragoza, Spain.

The dataset [1] hosts pedological info and images of the lands -locally known as - of the outcropping gypsiferous core of the Barbastro-Balaguer anticline (Fig. 1). It stands out in the landscape for the linear reliefs due to outcrops of dipping strata with differential resistance to erosion, and also because of its whitish color (Fig.

View Article and Find Full Text PDF

Seatizen Atlas: a collaborative dataset of underwater and aerial marine imagery.

Sci Data

January 2025

IFREMER Délégation Océan Indien (DOI), Le Port, 97420, La Réunion, Rue Jean Bertho, France.

Citizen Science initiatives have a worldwide impact on environmental research by providing data at a global scale and high resolution. Mapping marine biodiversity remains a key challenge to which citizen initiatives can contribute. Here we describe a dataset made of both underwater and aerial imagery collected in shallow tropical coastal areas by using various low cost platforms operated either by citizens or researchers.

View Article and Find Full Text PDF

Nanoplastics are suspected to pollute every environment on Earth, including very remote areas reached via atmospheric transport. We approached the challenge of measuring environmental nanoplastics by combining high-sensitivity TD-PTR-MS (thermal desorption-proton transfer reaction-mass spectrometry) with trained mountaineers sampling high-altitude glaciers ("citizen science"). Particles < 1 μm were analysed for common polymers (polyethylene, polyethylene terephthalate, polypropylene, polyvinyl chloride, polystyrene and tire wear particles), revealing nanoplastic concentrations ranging 2-80 ng mL at five of 14 sites.

View Article and Find Full Text PDF

Citizen science has been increasingly utilized for monitoring resource conditions and visitor use in protected areas. However, the quality of data provided by citizen scientists remains a major concern that hinders wider applications in protected area management. We evaluated a prototype, citizen science-based trail assessment and monitoring program in Hong Kong using an integrated evaluative approach with a specific focus on the congruence of data collected by trained volunteers and managers.

View Article and Find Full Text PDF

Amid rapid urbanization, land use shifts in cities globally have profound effects on ecosystems and biodiversity. Birds, as a crucial component of urban biodiversity, are highly sensitive to environmental changes and often serve as indicator species for biodiversity. This study, using Shenzhen as a case study, integrates machine learning techniques with spatial statistical methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!