Interaction and Transport of Benzalkonium Chlorides by the Organic Cation and Multidrug and Toxin Extrusion Transporters.

Drug Metab Dispos

Department of Pharmaceutics (L.S.V., J.W.), Department of Medicinal Chemistry (R.P.S., L.X.), and Department of Environmental and Occupational Health Sciences, School of Public Health (L.X.), University of Washington, Seattle, Washington

Published: March 2024

Humans are chronically exposed to benzalkonium chlorides (BACs) from environmental sources. The U.S. Food and Drug Administration (FDA) has recently called for additional BAC safety data, as these compounds are cytotoxic and have great potential for biochemical interactions. Biodistribution studies revealed that BACs extensively distribute to many tissues and accumulate at high levels, especially in the kidneys, but the underlying mechanisms are unclear. In this study, we characterized the interactions of BACs of varying alkyl chain length (C8 to C14) with the human organic cation transporters (hOCT1-3) and multidrug and toxin extrusion proteins (hMATE1/2K) with the goal to identify transporters that could be involved in BAC disposition. Using transporter-expressing cell lines, we showed that all BACs are inhibitors of hOCT1-3 and hMATE1/2K (IC ranging 0.83-25.8 M). Further, the short-chain BACs (C8 and C10) were identified as substrates of these transporters. Interestingly, although BAC C8 displayed typical Michaelis-Menten kinetics, C10 demonstrated a more complex substrate-inhibition profile. Transwell studies with transfected Madin-Darby canine kidney cells revealed that intracellular accumulation of basally applied BAC C8 and C10 was substantially higher (8.2- and 3.7-fold, respectively) in hOCT2/hMATE1 double-transfected cells in comparison with vector-transfected cells, supporting a role of these transporters in mediating renal accumulation of these compounds in vivo. Together, our results suggest that BACs interact with hOCT1-3 and hMATE1/2K as both inhibitors and substrates and that these transporters may play important roles in tissue-specific accumulation and potential toxicity of short-chain BACs. Our findings have important implications for understanding human exposure and susceptibility to BACs due to environmental exposure. SIGNIFICANCE STATEMENT: Humans are systemically exposed to benzalkonium chlorides (BACs). These compounds broadly distribute through tissues, and their safety has been questioned by the FDA. Our results demonstrate that hOCT2 and hMATE1 contribute to the renal accumulation of BAC C8 and C10 and that hOCT1 and hOCT3 may be involved in the tissue distribution of these compounds. These findings can improve our understanding of BAC disposition and toxicology in humans, as their accumulation could lead to biochemical interactions and deleterious effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10955720PMC
http://dx.doi.org/10.1124/dmd.123.001625DOI Listing

Publication Analysis

Top Keywords

benzalkonium chlorides
12
bacs
9
organic cation
8
multidrug toxin
8
toxin extrusion
8
exposed benzalkonium
8
chlorides bacs
8
bacs environmental
8
biochemical interactions
8
distribute tissues
8

Similar Publications

The widespread use of disinfectants and antiseptics has led to the emergence of nosocomial pathogens that are less sensitive to these agents, which in combination with multidrug resistance (MDR) can pose a significant epidemiologic risk. We investigated the susceptibility of nosocomial , , , and to a 0.05% chlorhexidine (CHX) solution and a biocidal S7 composite solution based on CHX (0.

View Article and Find Full Text PDF

A representative surfactant, benzalkonium chloride (BAC) is used as a disinfectant, but sometimes causes serious side effects, including lung disorders such as interstitial pneumonia. However, its pathogenic mechanisms remain unexplained. In this study, we identified a novel mechanism by which BAC initiates inflammatory responses that may be responsible for its side effects.

View Article and Find Full Text PDF

Background: Healthcare-associated infections (HAI) caused by multidrug-resistant organisms have emerged as a significant global issue, posing substantial challenges to healthcare systems. Low- and intermediate-level disinfectants are extensively utilized for cleaning and disinfecting surfaces in hospitals to mitigate environmental transmission of HAI. Therefore, the need for more effective and environmentally safe disinfectants is increasing.

View Article and Find Full Text PDF

Research review and transcriptomic insights into Benzalkonium chloride inhalation and disease association.

Ecotoxicol Environ Saf

January 2025

College of Pharmacy, Korea University, Sejong 30019, South Korea. Electronic address:

The widespread use of disinfectants, particularly during the coronavirus disease (COVID-19) pandemic, has significantly increased human exposure to biocides, raising concerns about their potential health risks, especially when inhaled. Benzalkonium chloride (BKC), a quaternary ammonium compound commonly used as a disinfectant and preservative, is a notable example because it is frequently used in household products and medical settings. Despite its broad usage, limited research has been conducted on the respiratory and systemic toxicities of BKC.

View Article and Find Full Text PDF

Prcis: Preservative-free omidenepag isopropyl (OMDI) 0.002% ophthalmic solution and OMDI 0.002% ophthalmic solution preserved with benzalkonium chloride were bioequivalent in lowering intraocular pressure after 4 weeks' treatment in patients with primary open-angle glaucoma or ocular hypertension.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!