The world's attention is drawn to the widespread ingestion, toxicity, and bioaccumulation of the Atrazine (AT) and Endosulfan (ES). Pesticides have been proven to have endocrine-disrupting, genotoxic, and persistent characteristics. In this work, the structural design of green synthesized NiFeO is incorporated in rice husk biochar to form BC@NiFeO nanocomposite. Powder X-ray diffraction and microscopic analysis confirmed the semi-crystalline nature of BC@NiFeO reduced due to the incorporation of amorphous BC. The green BC@NiFeO nanocomposite degraded AT and ES up to 98 % and 92 %, respectively. The maximum degradation achieved by BC@NiFeO nanocomposite with minimum pollutants concentration (50 mg L) with 10 mg catalyst dose at acidic pH in natural sunlight because of the higher negative value of zeta potential (-26.4 mV) and lower band gap (2.5 eV). The degradation process involves first-order kinetics followed by initial Langmuir adsorption. The presence of various radical quenchers (t-BuOH, p-BZQ, NaEDTA) has led to the conclusion that hydroxyl radicals play a significant role in the degradation of the toxic substances AT and ES. Additionally, a green-fabricated BC@NiFeO nanocomposite has exhibited exceptional efficiency in degrading AT and ES pollutants in actual wastewater samples. Furthermore, this nanocomposite has demonstrated outstanding sustainability and cost-effectiveness, maintaining its effectiveness for up to eight cycles without a noticeable reduction in activity. In summary, due to its favorable surface characteristics, the environmentally friendly BC@NiFeO nanocomposite holds excellent promise as a unique and potential photocatalyst for various industrial applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.141337DOI Listing

Publication Analysis

Top Keywords

bc@nifeo nanocomposite
20
nanocomposite
7
bc@nifeo
6
green construction
4
construction biochar@nifeo
4
biochar@nifeo nanocomposite
4
nanocomposite highly
4
highly efficient
4
efficient photocatalytic
4
photocatalytic remediation
4

Similar Publications

Three composites based on Poly (meta-aminophenol) (PmAP), (3-aminopropyl) triethoxysilane (APTES) and graphene oxide (GO) were synthesized with initial GO dispersion of 3.3, 6.6, and 9.

View Article and Find Full Text PDF

A new humic acid-based nanomagnetic copper(II) composite was prepared and used as an eco-friendly recoverable catalyst for synthesizing 1,4-disubstituted 1,2,3-triazoles. The synthesis was done via the three-component click reaction of alkyl halide, sodium azide, and terminal alkyne with good to excellent yield. A simple magnetic copper acetate composite, FeO@HA-Cu(OAc), was prepared using humic acid and characterized by SEM, TEM, XRD, EDX, EDS-mapping, VSM, TGA, AAS, and FT-IR.

View Article and Find Full Text PDF

In this study, a novel hybrid nanostructure consisting of acid-decorated chitosan and magnetic AlFeO nanoparticles was fabricated. The acid-decorated chitosan provided a stable and biocompatible matrix for the magnetic AlFeO nanoparticles. Various techniques including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction patterns (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), specific surface area (BET), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were used to characterize and confirm the successful synthesis of the hybrid nanostructure.

View Article and Find Full Text PDF

Cuproptosis is a newly discovered mode of cell death, which is caused by excess copper and results in cell death via the mitochondrial pathway. However, the complex tumor microenvironment (TME) is characterized by many factors, including high levels of glutathione and lack O, limit the application of traditional cuproptosis agents in antitumor therapy. Herein, we report a hyaluronic acid modified copper-manganese composite nanomedicine (CMCNs@HA) to remodel the TME and facilitate efficient cuproptosis in tumor.

View Article and Find Full Text PDF

In this study, we demonstrate MXene (TiCT)-based coin-cell asymmetric supercapacitor (coin-cell ASC) exhibiting high energy density and high power density along with good capacitance. We synthesized mesoporous carbon (MC) by annealing alginic acid at varying temperatures (900 °C, 1000 °C and 1100 °C). Among the prepared samples, MC-1000 exhibited a highly porous structure and a higher surface area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!