The issue of antibiotic resistance is now recognized by the World Health Organisation (WHO) as one of the major problems in human health. Although its effects are evident in the healthcare settings, the root cause should be traced back to the One Health link, extending from animals to the environment. In fact, the use of organic fertilizers in agroecosystems represents one, if not the primary, cause of the introduction of antibiotics and antibiotic-resistant bacteria into the soil. Since the concentrations of antibiotics introduced into the soil are residual, the agroecosystem has become a perfect environment for the selection and proliferation of antibiotic resistance genes (ARGs). The continuous influx of these emerging contaminants (i.e., antibiotics) into the agroecosystem results in the selection and accumulation of ARGs in soil bacteria, occasionally giving rise to multi-resistant bacteria. These bacteria may harbour ARGs related to various antibiotics on their plasmids. In this context, these bacteria can potentially enter the human sphere when individuals consume food from contaminated agroecosystems, leading to the acquisition of multi-resistant bacteria. Once introduced into the nosocomial environment, these bacteria pose a significant threat to human health. In this review, we analyse how the use of digestate as an organic fertilizer can mitigate the spread of ARGs in agroecosystems. Furthermore, we highlight how, according to European guidelines, digestate can be considered a Nature-Based Solution (NBS). This NBS not only has the ability to mitigate the spread of ARGs in agroecosystems but also offers the opportunity to further improve Microbial-Based Solutions (MBS), with the aim of enhancing soil quality and productivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2024.118395 | DOI Listing |
Plant Foods Hum Nutr
December 2024
Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, Mérida, 97203, Yucatán, México.
The increasing concern over microbial resistance to conventional antimicrobial agents used in food preservation has led to growing interest in plant-derived antimicrobial peptides (AMPs) as alternative solutions. In this study, the antimicrobial mechanisms of chia seed-derived peptides YACLKVK, KLKKNL, KLLKKYL, and KKLLKI were investigated against Staphylococcus aureus (SA) and Escherichia coli (EC). Fluorometric assays and scanning electron microscopy (SEM) demonstrated that the peptides disrupt bacterial membranes, with propidium iodide (PI) uptake reaching 72.
View Article and Find Full Text PDFSci Rep
December 2024
Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
Hospital-acquired infection (HAI) and antimicrobial resistance (AMR) represent major challenges in healthcare system. Despite numerous studies have assessed environmental and patient samples, very few studies have explored the microbiome and resistome profiles of medical staff including nursing workers. This cross-sectional study was performed in a tertiary hospital in China and involved 25 nurses (NSs), 25 nursing workers (NWs), and 55 non-medical control (NC).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Computer Sciences and Industries, Universidad Católica del Maule, Talca, Chile.
Antimicrobial resistance (AMR) poses a significant global health challenge, necessitating advanced predictive models to support clinical decision-making. In this study, we explore multi-label classification as a novel approach to predict antibiotic resistance across four clinically relevant bacteria: E. coli, S.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.
Patients undergoing autologous stem cell transplantation (auto-SCT) face elevated risks of infections. Additionally, patients colonized in the gastrointestinal tract with antibiotic-resistant bacteria (ARB) are at higher risk of infection with ARB and other infections. Therefore, patients colonized with ARB before auto-SCT should present with an exceptionally high incidence of infections.
View Article and Find Full Text PDFSci Rep
December 2024
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
Candida albicans is a common opportunistic pathogen, causing infections ranging from superficial to bloodstream infections. The limited antifungal options and rising drug resistance challenge clinical treatment. We screened 98 essential oils and identified 48 with antifungal activity against Candida albicans at 1% concentration, determining their minimum inhibitory concentrations (MIC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!