AI Article Synopsis

  • Researchers are exploring complex physics in strongly correlated systems using advanced quantum Monte Carlo simulations to understand different phases that emerge based on interaction strength and the number of components (N) in an SU(N) fermionic model.
  • The study found that for small N values (like 2 and 3), the system displays antiferromagnetic order, while for large N, staggered valence bond solid order becomes significant.
  • The research also uncovers a Mott insulating phase characterized by the competition between staggered and columnar orders, without spontaneous symmetry breaking, suggesting potential pathways to identify exotic states like quantum spin liquids in real materials.

Article Abstract

In the past few decades, tremendous efforts have been made toward understanding the exotic physics emerging from competition between various ordering tendencies in strongly correlated systems. Employing state-of-the-art quantum Monte Carlo simulation, we investigate an interacting SU(N) fermionic model with varying interaction strength and value of N, and we unveil the ground-state phase diagram of the model exhibiting a plethora of exotic phases. For small values of N-namely, N=2, 3-the ground state is an antiferromagnetic (AFM) phase, whereas in the large-N limit, a staggered valence bond solid (VBS) order is dominant. For intermediate values of N such as N=4, 5, remarkably, our study reveals that distinct VBS orders appear in the weak and strong coupling regimes. More fantastically, the competition between staggered and columnar VBS ordering tendencies gives rise to a Mott insulating phase without spontaneous symmetry breaking (SSB), existing in a large interacting parameter regime, which is consistent with a gapped quantum spin liquid. Our study not only provides a platform to investigate the fundamental physics of quantum many-body systems-it also offers a novel route toward searching for exotic states of matter such as quantum spin liquid in realistic quantum materials.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.036704DOI Listing

Publication Analysis

Top Keywords

quantum spin
12
spin liquid
12
ordering tendencies
8
quantum
6
emergence competing
4
competing orders
4
orders quantum
4
liquid sun
4
sun fermions
4
fermions decades
4

Similar Publications

Nanoscale Magnetic Ordering Dynamics in a High Curie Temperature Ferromagnet.

Nano Lett

January 2025

Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, Tennessee 37831, United States.

Thermally driven transitions between ferromagnetic and paramagnetic phases are characterized by critical behavior with divergent susceptibilities, long-range correlations, and spin dynamics that can span kHz to GHz scales as the material approaches the critical temperature , but it has proven technically challenging to probe the relevant length and time scales with most conventional measurement techniques. In this study, we employ scanning nitrogen-vacancy center based magnetometry and relaxometry to reveal the critical behavior of a high- ferromagnetic oxide near its Curie temperature. Cluster analysis of the measured temperature-dependent nanoscale magnetic textures points to a 3D universality class with a correlation length that diverges near .

View Article and Find Full Text PDF

Two-Dimensional Nonvolatile Valley Spin Valve.

ACS Nano

January 2025

Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, United States.

A spin valve represents a well-established device concept in magnetic memory technologies, whose functionality is determined by electron transmission, controlled by the relative alignment of magnetic moments of the two ferromagnetic layers. Recently, the advent of valleytronics has conceptualized a valley spin valve (VSV)─a device that utilizes the valley degree of freedom and spin-valley locking to achieve a similar valve effect without relying on magnetism. In this study, we propose a nonvolatile VSV (-VSV) based on a two-dimensional (2D) ferroelectric semiconductor where resistance of -VSV is controlled by a ferroelectric domain wall between two uniformly polarized domains.

View Article and Find Full Text PDF

In closed systems, the celebrated Lieb-Schultz-Mattis (LSM) theorem states that a one-dimensional locally interacting half-integer spin chain with translation and spin rotation symmetries cannot have a non-degenerate gapped ground state. However, the applicability of this theorem is diminished when the system interacts with a bath and loses its energy conservation. In this letter, we propose that the LSM theorem can be revived in the entanglement Hamiltonian when the coupling to the bath renders the system short-range correlated.

View Article and Find Full Text PDF

Absorption spectra of PS in the ultraviolet and infrared region.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 China. Electronic address:

The line list is essential for accurately modeling various astrophysical phenomena, such as stellar photospheres and atmospheres of extrasolar planets. This paper introduces a new line database for the PS molecule spanning from the ultraviolet to the infrared regions, covering wavenumbers up to 45000 cm and containing over ten million transitions between 150,458 states with total angular momentum J < 160. Accurate line intensities for rotational, vibrational and electronic transitions are generated by using the general purpose variational code DUO.

View Article and Find Full Text PDF

The chirality of magnons, exhibiting left- and right-handed polarizations analogous to the counterparts of spin-up and spin-down, has emerged as a promising paradigm for information processing. However, the potential of this paradigm is constrained by the controllable excitation and transmission of chiral magnons. Here, the magnon transmission is explored in the GdFeO/NiO/Pt structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!