Understanding the collapse kinetics of polyelectrolytes (PEs) is crucial for comprehending various biological and industrial phenomena. Despite occurring in an aqueous environment, previous computational studies have overlooked the influence of hydrodynamic interactions (HIs) facilitated by fluid motion. Here, we directly compute the Navier-Stokes equation to investigate the collapse kinetics of a highly charged flexible PE. Our findings reveal that HI accelerates PE collapse induced by hydrophobicity and multivalent salt. In the case of hydrophobicity, HI induces long-range collective motion of monomers, accelerating the coarsening of local clusters through either Brownian-coagulation-like or evaporation-condensation-like processes, depending on the strength of hydrophobicity with respect to electrostatic interaction. Regarding multivalent salt, HI does not affect the condensation dynamics of multivalent ions but facilitates quicker movement of local dipolar clusters along the PE, thereby expediting the collapse process. These results provide valuable insights into the underlying mechanisms of HI in PE collapse kinetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.132.038101 | DOI Listing |
Sci Rep
January 2025
Department of Mechanics, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, People's Republic of China.
Droplets impinging on sparse microgrooved polydimethylsiloxane (PDMS) surfaces with different solid fractions was experimentally investigated. First, wettability and stability of droplets on these surfaces was analyzed. The advancing and receding contact angles were found to have a large difference between in the longitudinal direction and in the transverse one, which could be attributed to the anisotropy of the micropatterned surfaces.
View Article and Find Full Text PDFShock
January 2025
Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 599 Taylor Road, Room 209, Piscataway, NJ, USA 08854.
Introduction: Coagulopathy following traumatic injury impairs stable blood clot formation and exacerbates mortality from hemorrhage. Understanding how these alterations impact blood clot stability is critical to improving resuscitation. Furthermore, the incorporation of machine learning algorithms to assess clinical markers, coagulation assays and biochemical assays allows us to define the contributions of these factors to mortality.
View Article and Find Full Text PDFAdv Mater
January 2025
MOE Key Laboratory for UV Light-Emitting Materials and Technology, Department of Physics, Northeast Normal University, Changchun, 130024, P. R. China.
Avoiding severe structural distortion, irreversible phase transition, and realizing the stabilized multielectron redox are vital for promoting the development of high-performance NASICON-type cathode materials for sodium-ion batteries (SIBs). Herein, a high-entropy NaVFeTiMnCr(PO) (HE-NaTMP) cathode material is prepared by ultrafast high-temperature shock, which inhibits the possibility of phase separation and achieves reversible and stable multielectron transfer of 2.4/2.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, PR China.
Zn-MnO batteries with two-electron transfer harvest high energy density, high working voltage, inherent safety, and cost-effectiveness. Zn as the dominant charge carriers suffer from sluggish kinetics due to the strong Zn-MnO coulombic interaction, which is also the origin of pestilent MnO lattice deformation and performance degradation. Current studies particularly involve H insertion-dominating chemistry, where the long-term cycle stability remains challenging due to the accumulative Zn insertion and structural collapse.
View Article and Find Full Text PDFNano Lett
January 2025
Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China.
Efficient oxygen evolution reaction (OER) catalysts with fast kinetics, high efficiency, and stability are essential for scalable green production of hydrogen. The rational design and fabrication of catalysts play a decisive role in their catalytic behavior. This work presents a high-entropy catalyst, FeCoNiCuMo-O, synthesized via carbothermal shock.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!