Explaining Dark Matter Halo Density Profiles with Neural Networks.

Phys Rev Lett

Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom.

Published: January 2024

We use explainable neural networks to connect the evolutionary history of dark matter halos with their density profiles. The network captures independent factors of variation in the density profiles within a low-dimensional representation, which we physically interpret using mutual information. Without any prior knowledge of the halos' evolution, the network recovers the known relation between the early time assembly and the inner profile and discovers that the profile beyond the virial radius is described by a single parameter capturing the most recent mass accretion rate. The results illustrate the potential for machine-assisted scientific discovery in complicated astrophysical datasets.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.031001DOI Listing

Publication Analysis

Top Keywords

density profiles
12
dark matter
8
neural networks
8
explaining dark
4
matter halo
4
halo density
4
profiles neural
4
networks explainable
4
explainable neural
4
networks connect
4

Similar Publications

High-resolution microCT analysis of sclerotic subchondral bone beneath bone-on-bone wear grooves in severe osteoarthritis.

Bone

January 2025

Department of Research and Development, Schulthess Klinik, Lengghalde 2, 8008 Zürich, Switzerland. Electronic address:

Osteoarthritis (OA) is associated with sclerosis, a thickening of the subchondral bone plate, yet little is known about bone adaptations around full-thickness cartilage defects in severe knee OA, particularly beneath bone-on-bone wear grooves. This high-resolution micro-computed tomography (microCT) study aimed to quantify subchondral bone microstructure relative to cartilage defect location, distance from the joint space, and groove depth. Ten tibial plateaus with full-thickness cartilage defects were microCT-scanned to determine defect location and size.

View Article and Find Full Text PDF

Engineering the Ratios of Nanoparticles Dispersed in Triphasic Nanocomposites for Biomedical Applications.

ACS Appl Mater Interfaces

January 2025

Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States.

Polymer/ceramic nanocomposites integrated the advantages of both polymers and ceramics for a wide range of biomedical applications, such as bone tissue repair. Here, we reported triphasic poly(lactic--glycolic acid) (PLGA, LA/GA = 90:10) nanocomposites with improved dispersion of hydroxyapatite (HA) and magnesium oxide (MgO) nanoparticles using a process that integrated the benefits of ultrasonic energy and dual asymmetric centrifugal mixing. We characterized the microstructure and composition of the nanocomposites and evaluated the effects of the HA/MgO ratios on degradation behavior and cell-material interactions.

View Article and Find Full Text PDF

Aim: To compare the respective clinical and pathologic features of antimitochondrial antibodies-negative (AMA-negative) primary biliary cirrhosis (PBC) and cholestatic type drug-induced liver injury (DILI) for clinical differential diagnosis.

Patients And Methods: Clinical data from 23 patients with AMA-negative PBC and 39 patients with cholestatic type DILI, treated at our hospital between January 2013 and January 2024, were collected and retrospectively analyzed.

Results: The cholestatic type DILI group exhibited a higher incidence of malaise and abdominal pain compared with the AMA-negative PBC group.

View Article and Find Full Text PDF

Background: Muscle-invasive bladder cancer (MIBC) is a prevalent cancer characterized by molecular and clinical heterogeneity. Assessing the spatial heterogeneity of the MIBC microenvironment is crucial to understand its clinical significance.

Methods: In this study, we used imaging mass cytometry (IMC) to assess the spatial heterogeneity of MIBC microenvironment across 185 regions of interest in 40 tissue samples.

View Article and Find Full Text PDF

In this article, the propagation of high-frequency (HF) plane electromagnetic waves through the lower ionosphere is numerically investigated using the real geometry of the Earth's magnetic field in the northern hemisphere. For this purpose, the profiles of electron density and the collision frequency in the layers of the lower ionosphere (D- and E-region) are considered using the reported experimental data for day and night. The reflection, transmission, and absorption coefficients of HF radio waves in the frequency range of 3 to 30 MHz are calculated in the ionosphere plasma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!