Enriching new transplantable RGC-like cells from retinal organoids for RGC replacement therapy.

Biochem Biophys Res Commun

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.

Published: March 2024

Optic neuropathies, such as glaucoma, are due to progressive retinal ganglion cells (RGCs) degeneration, result in irreversible vision loss. The promising RGCs replacement therapy for restoring vision are impeded by insufficient RGC-like cells sources. The present work was enriched one new type RGC-like cells using two surface markers CD184 and CD171 from human induced pluripotent stem cells (hiPSCs) by FACS sorting firstly. These new kind cells have well proliferation ability and possessed passage tolerance in vitro 2D or 3D spheroids culture, which kept expressing Pax6, Brn3b and βIII-Tubulin and so on. The transplanted CD184CD171 RGC-like cells could survive and integrate into the normal and optic nerve crush (ONC) mice retina, especially they were more inclined to across the optic nerve head and extend to the damaged optic nerve. These data support the feasible application for cell replacement therapy in RGC degenerative diseases, as well as help to develop new commercial cells sorting reagents and establish good manufacturing practice (GMP) grade RGC-like donor cells for further clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2024.149509DOI Listing

Publication Analysis

Top Keywords

rgc-like cells
16
replacement therapy
12
optic nerve
12
cells
9
rgc-like
5
enriching transplantable
4
transplantable rgc-like
4
cells retinal
4
retinal organoids
4
organoids rgc
4

Similar Publications

Regeneration of Retinal Ganglion Cell-Like Cells and Reconstruction of Visual Neural Circuits in mice with Glaucoma.

Exp Eye Res

March 2025

Department of Ophthalmology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China.

Glaucoma is an irreversible blinding eye disease characterized by apoptosis of mature neurons-retinal ganglion cells (RGCs), visual field defect and vision loss. Regeneration of RGCs and reconstruction of the neural connections between the retina and the brain is considered an effective strategy to promote visual restoration in patients with glaucoma. However, there are currently no effective methods for regenerating RGCs to restore vision in clinical practice.

View Article and Find Full Text PDF

POU4F2 overexpression promotes the genesis of retinal ganglion cell-like projection neurons from late progenitors.

Development

March 2025

Laboratory for Investigation in Neuroregeneration and Development (LINDes), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil.

Retinal ganglion cells (RGCs) are the projection neurons of the retina, and their death promotes an irreversible blindness. Several factors were described to control their genesis during retinal development. These include Atoh7, a major orchestrator of the RGC program, and downstream targets of this transcription factor, including Pou4f factors, that in turn regulate key aspects of terminal differentiation.

View Article and Find Full Text PDF

The death of retinal ganglion cells (RGCs) is a key factor in the pathophysiology of all forms of glaucoma. RGC culture serves as a simple system for establishing and testing candidate therapies. This study aimed to explore the differentiation of primary retinal progenitor cells (RPCs) into RGC-like cells induced by low-dose cytarabine (Ara-C).

View Article and Find Full Text PDF

Shootin1 Regulates Retinal Ganglion Cell Neurite Development: Insights From an RGC Direct Somatic Cell Reprogramming Model.

Invest Ophthalmol Vis Sci

June 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.

Purpose: Retinal ganglion cells (RGCs) connect the retina to the brain. Proper development of the axons and dendrites of RGCs is the basis for these cells to function as projection neurons to deliver visual information to the brain. The purpose of this study was to investigate the function of Shtn1 (which encodes shootin1) in RGC neurite development.

View Article and Find Full Text PDF

Enriching new transplantable RGC-like cells from retinal organoids for RGC replacement therapy.

Biochem Biophys Res Commun

March 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.

Optic neuropathies, such as glaucoma, are due to progressive retinal ganglion cells (RGCs) degeneration, result in irreversible vision loss. The promising RGCs replacement therapy for restoring vision are impeded by insufficient RGC-like cells sources. The present work was enriched one new type RGC-like cells using two surface markers CD184 and CD171 from human induced pluripotent stem cells (hiPSCs) by FACS sorting firstly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!