Gastruloids have emerged as highly useful in vitro models of mammalian gastrulation. One of the most striking features of 3D gastruloids is their elongation, which mimics the extension of the embryonic anterior-posterior axis. Although axis extension is crucial for development, the underlying mechanism has not been fully elucidated in mammalian species. Gastruloids provide an opportunity to study this morphogenic process in vitro. Here, we measure and quantify the shapes of elongating gastruloids and show, by Cellular Potts model simulations based on a novel, optimized algorithm, that convergent extension, driven by a combination of active cell crawling and differential adhesion can explain the observed shapes. We reveal that differential adhesion alone is insufficient and also directly observe hallmarks of convergent extension by time-lapse imaging of gastruloids. Finally, we show that gastruloid elongation can be abrogated by inhibition of the Rho kinase pathway, which is involved in convergent extension in vivo. All in all, our study demonstrates, how gastruloids can be used to elucidate morphogenic processes in embryonic development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866519PMC
http://dx.doi.org/10.1371/journal.pcbi.1011825DOI Listing

Publication Analysis

Top Keywords

convergent extension
16
differential adhesion
12
shapes elongating
8
elongating gastruloids
8
extension driven
8
driven combination
8
combination active
8
active cell
8
cell crawling
8
crawling differential
8

Similar Publications

Introduction: Precision health can be described as the right intervention, at the right time, for the right person, with a focus on monitoring and maintaining health in a longitudinal approach. Despite an increasing focus on precision approaches in medicine, their application in a rehabilitation context remains unexplored. As such, a greater understanding of the current state of the literature is required, in combination with clinician, researcher and healthcare manager perspectives regarding barriers and facilitators to the practical implementation of precision rehabilitation in clinical practice.

View Article and Find Full Text PDF

Lower-limb exoskeletons have demonstrated great potential for gait rehabilitation in individuals with motor impairments; however, maintaining human-exoskeleton coordination remains a challenge. The coordination problem, referred to as any mismatch or asynchrony between the user's intended trajectories and exoskeleton desired trajectories, leads to sub-optimal gait performance, particularly for individuals with residual motor ability. Here, we investigate the virtual energy regulator (VER)'s ability to generate coordinated locomotion in lower limb exoskeleton.

View Article and Find Full Text PDF

Energy decomposition analysis (EDA) based on density functional theory (DFT) and self-consistent field (SCF) calculations has become widely used for understanding intermolecular interactions. This work reports a new approach to EDA for post-SCF wave functions based on closed-shell restricted second-order Mo̷ller-Plesset (MP2) together with an efficient implementation that generalizes the successful SCF-level second-generation absolutely localized molecular orbital EDA approach, ALMO-EDA-II, and improves upon MP2 ALMO-EDA-I. The new MP2 ALMO-EDA-II provides distinct energy contributions for a frozen interaction energy containing permanent electrostatics and Pauli repulsions, polarized energy-yielding induced electrostatics, dispersion-corrected energy, and the fully relaxed energy, which describes charge transfer.

View Article and Find Full Text PDF

Directed collective cell migration is essential for morphogenesis, and chemical, electrical, mechanical and topological features have been shown to guide cell migration in vitro. Here we provide in vivo evidence showing that endogenous electric fields drive the directed collective cell migration of an embryonic stem cell population-the cephalic neural crest of Xenopus laevis. We demonstrate that the voltage-sensitive phosphatase 1 is a key component of the molecular mechanism, enabling neural crest cells to specifically transduce electric fields into a directional cue in vivo.

View Article and Find Full Text PDF

This study introduces a family of root-solvers for systems of nonlinear equations, leveraging the Daftardar-Gejji and Jafari Decomposition Technique coupled with the midpoint quadrature rule. Despite the existing application of these root solvers to single-variable equations, their extension to systems of nonlinear equations marks a pioneering advancement. Through meticulous derivation, this work not only expands the utility of these root solvers but also presents a comprehensive analysis of their stability and semilocal convergence; two areas of study missing in the existing literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!