High Thermal Conductivity and Radiative Cooling Designed Boron Nitride Nanosheets/Silk Fibroin Films for Personal Thermal Management.

ACS Appl Mater Interfaces

Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

Published: February 2024

AI Article Synopsis

  • - The study focuses on developing eco-friendly passive cooling solutions to replace energy-intensive thermal management techniques for personal and wearable devices.
  • - Researchers created a cooling patch using biodegradable silk fibroin and boron nitride nanosheets, achieving impressive heat dissipation and temperature reductions of about 2.5 °C outdoors and 8.2 °C indoors.
  • - This new material shows excellent thermal efficiency, safety for skin use, and can be recycled and reused for at least three months, positioning it as a promising option for personal thermal management.

Article Abstract

The implementation of passive cooling strategies is crucial for transitioning from the current high-power- and energy-intensive thermal management practices to more environmentally friendly and carbon-neutral alternatives. Among the various approaches, developing thermal management materials with high thermal conductivity and emissivity for effective cooling of personal and wearable devices in both indoor and outdoor settings poses significant challenges. In this study, we successfully fabricated a cooling patch by combining biodegradable silk fibroin with boron nitride nanosheets. This patch exhibits consistent heat dissipation capabilities under different ambient conditions. Leveraging its excellent radiative cooling efficiency ( = 0.89 and ε = 0.84) and high thermal conductivity (in-plane 27.58 W m K and out-plane 1.77 W m K), the cooling patch achieves significant simulated skin temperature reductions of approximately 2.5 and 8.2 °C in outdoor and indoor conditions, respectively. Furthermore, the film demonstrates excellent biosafety and can be recycled and reused for at least three months. This innovative BNNS/SF film holds great potential for advancing the field of personal thermal management materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c16602DOI Listing

Publication Analysis

Top Keywords

thermal management
16
high thermal
12
thermal conductivity
12
radiative cooling
8
boron nitride
8
personal thermal
8
management materials
8
cooling patch
8
cooling
6
thermal
6

Similar Publications

In-situ growing carbon nanotubes reinforced highly heat dissipative three-dimensional aluminum framework composites.

J Colloid Interface Sci

December 2024

State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China. Electronic address:

The demand for lightweight heat dissipation design in highly miniaturized and portable electronic devices with high thermal density is becoming increasingly urgent. Herein, highly thermal conductive carbon nanotubes (CNTs) reinforced aluminum foam composites were prepared by catalyst chemical bath and subsequent in-situ growth approach. The dense CNTs show the intertwined structure features and construct high-speed channels near the surface of the skeletons for efficient thermal conduction, promoting the transport efficiency of heat flow.

View Article and Find Full Text PDF

Epilepsy is one of the oldest neurological disorders discovered by mankind. This condition is firmly coupled with unprovoked seizures stimulated by irrepressible neuroelectrical blasts. Orally taken valproate family has been employed for prophylactic management; however, oral administration is not applicable for critical scenarios, thus calling for medication routes fulfilling necessities of immediate innervation.

View Article and Find Full Text PDF

Two-dimensional Nanosheets by Liquid Metal Exfoliation.

Adv Mater

December 2024

Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.

Liquid exfoliation is a scalable and effective method for synthesizing 2D nanosheets (NSs) but often induces contamination and defects. Here, liquid metal gallium (Ga) is used to exfoliate bulk layered materials into 2D NSs at near room temperature, utilizing the liquid surface tension and Ga intercalation to disrupt Van der Waals (vdW) forces. In addition, the process can transform the 2H-phase of transition metal dichalcogenides into the 1T'-phase under ambient conditions.

View Article and Find Full Text PDF

Introduction: The seizures in Lennox-Gastaut syndrome are typically resistant to treatment. Seven antiseizure medications (ASMs) in the US (six in the UK/EU) are licensed for the treatment of seizures in LGS: lamotrigine, topiramate, rufinamide, clobazam, felbamate (not licensed in the UK/EU), cannabidiol and fenfluramine. Other options include neurostimulation, corpus callosotomy and dietary therapies, principally the ketogenic diet and its variants.

View Article and Find Full Text PDF

Plastic blends were co-pyrolyzed under non-isothermal conditions in a thermogravimetric (TG) analyzer. The co-pyrolysis characteristics and kinetic triplet, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!