MHY1485 is an mTOR activator that inhibits the autophagy process by inhibiting the fusion between autophagosomes and lysosomes. This study aimed to explore the role and mechanism of MHY1485 in hepatocellular carcinoma (HCC) and to provide an in-depth understanding of the mechanisms of autophagy regulation in relation to adriamycin (ADM) resistance, as well as the development of a molecularly targeted autophagy-modulating approach. Here, ADM was used to treat HepG2 cells and construct an ADM-resistant cell model. The HepG2/ADM cell line and HepG2 cells were treated with MHY1485 and ADM, respectively, and the proliferation and apoptosis of HCC cells were detected using CCK8, clone formation, flow cytometry, and 5-ethynyl-2'-deoxyuridine staining assays. Ki-67, mTOR phosphorylation, and LC3A expression were detected by IF staining; the expression or phosphorylation levels of autophagy-related proteins (i.e., GLUT1, PGI, PFK, END, and MTHFD2) and apoptosis-related proteins (caspase-3, caspase-8, and caspase-9) were detected by qPCR and western blotting. The number of autophagosomes was determined by monodansylcadaverine staining. Our results showed that MHY1485 can inhibit the proliferation and growth of liver cancer cells, and that MHY1485 combined with ADM can effectively inhibit the tolerance of HepG2/ADM cells to ADM and enhance the efficacy of ADM. The results of the detection of the autophagy-related protein LC3A also indicated that MHY1485 activates mTOR and can affect the phosphorylation level of ULK1, inhibit autophagy, and enhance the sensitivity of liver cancer cells to adriamycin. In summary, MHY1485 can enhance the sensitivity of adriamycin-resistant cells to adriamycin by activating mTOR and blocking the autophagy process in cells; therefore, mTOR may become a potential target for the treatment of liver cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10142-024-01304-3DOI Listing

Publication Analysis

Top Keywords

hepg2 cells
12
liver cancer
12
cells
9
mhy1485
8
autophagy process
8
cancer cells
8
enhance sensitivity
8
cells adriamycin
8
adm
6
autophagy
5

Similar Publications

Background: Lenvatinib is an oral tyrosine kinase inhibitor that selectively inhib-its receptors involved in tumor angiogenesis and tumor growth. It is an emerging first-line treatment agent for hepatocellular carcinoma (HCC). However, there is no intravenous ad-ministration of Lenvatinib.

View Article and Find Full Text PDF

Introduction: Oxidative stress is an important cause of acetaminophen (APAP)-induced liver injury (AILI). Sakuranetin (Sak) is an antitoxin from the cherry flavonoid plant with good antioxidant effects. However, whether sakuranetine has a protective effect on APAP-induced liver injury is not clear.

View Article and Find Full Text PDF

Saline-tolerant medicinal plants possess novel chemical constituents with high bioactivity because of their unique secondary metabolic pathways. an aquatic plant found in the coastal wetlands of the Yellow River Delta, was collected and studied in the present work. Ten drimane-type sesquiterpenoids and four triterpenoids, including six new ones (sinenseines A-F), were isolated from a whole plant of for the first time.

View Article and Find Full Text PDF

The most common type of liver cancer is hepatocellular carcinoma (HCC), accounting for 75-85% of cases. Despite its associated side effects, sorafenib remains the standard treatment for HCC. Given the critical need to improve therapeutic efficacy while minimizing adverse effects, alternative drugs must be thoroughly investigated.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent hepatic disorder worldwide. Arachidonic acid 15-lipoxygenase (ALOX15), an enzyme catalyzing the peroxidation of polyunsaturated fatty acids, plays a crucial role in various diseases. Here, we sought to investigate the involvement of ALOX15 in MASLD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!