Background: Morphea, or localized scleroderma, is an inflammatory, fibrosing skin disorder that can be progressive and debilitating. Infrared thermography frequently has false positive results. The aim of this study was to assess the ability of multispectral imaging to predict disease progression in children with morphea.
Methods: Children with morphea were recruited between 2016 and 2022. Multispectral images of affected and matched contralateral unaffected sites were obtained using the Antera™ 3D camera. Clinical assessment was performed using the Localized Scleroderma Assessment Tool (LoSCAT). Children were followed up every 3 months for imaging and clinical review. The main outcome measurement was correlation of hemoglobin gradient between affected and matched contralateral unaffected tissue and progression.
Results: Of 17 children, the average age was 12 years (range 6-18 years); most were female (76.5%) and white (94.1%). Nearly two-thirds (64.7%) had linear morphea, 35.2% had plaque morphea; 58.8% had been treated with systemic agents. The average LoSCAT score was 20.6 (range 5-73). The average hemoglobin gradient between affected and matched contralateral unaffected skin was four times higher in those who had progression (average differential 0.3, range 0.1-0.4) compared to those who did not (average differential 0.08, range 0.02-0.15). Using a cut off of a 0.18 hemoglobin gradient between affected and unaffected skin, the sensitivity of multispectral imaging for detecting progression in pediatric morphea is 90% with specificity of 100%.
Conclusions: Multispectral imaging is a novel assessment tool with promising accuracy in predicting progression as an adjunct to clinical assessment in pediatric morphea. Further research should examine its performance against thermography.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pde.15485 | DOI Listing |
PLoS One
January 2025
Dipartimento di Architettura, University of Naples Federico II, Naples, Italy.
A key challenge in the art and archaeological field is the instrumental analysis of objects and materials while preserving their integrity. In this study, the world-renowned artwork Alexander Mosaic (The Issus Battle, collection of the National Archaeological Museum of Naples, IT), the most iconic representation of the face of the Macedonian king Alexander the Great coming from a Pompeii domus, was thoroughly analyzed with mobile and non-invasive methods, within a great project of restoration started in 2020. Representative areas of the Mosaic, overall consisting of ca.
View Article and Find Full Text PDFSci Data
January 2025
Centre for Automation and Robotics (CAR), Spanish National Research Council (CSIC), 28006, Madrid, Spain.
This study highlights the vital role of high-resolution (HR), open-source land cover maps for food security, land use planning, and environmental protection. The scarcity of freely available HR datasets underscores the importance of multi-spectral HR aerial images. We used unmanned aerial vehicle (UAV) to capture images for a centimeter-level orthomosaics, facilitating advanced remote sensing and spatial analysis.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Key Laboratory of Modern Preparation of TCM,Ministry of Education, Jiangxi University of Chinese Medicine Nanchang 330004, China National Key Laboratory of Creation of Modern Chinese Medicine with Classical Formulas Nanchang 330004, China.
In recent years, with the increasing societal focus on drug quality and safety, quality issues have become a major challenge faced by the pharmaceutical industry, directly impacting consumer health and market trust. By combining multispectral imaging technology with machine learning, it is possible to achieve rapid, non-destructive, and precise detection of traditional Chinese medicine(TCM) preparations, thereby revolutionizing traditional detection methods and developing more convenient and automated solutions. This paper provides a comprehensive review of the current applications of rapid, non-destructive detection techniques based on machine learning algorithms in the field of TCM preparations.
View Article and Find Full Text PDFTaiwan J Ophthalmol
December 2024
Singapore National Eye Centre, Singapore Eye Research Institute, Singapore.
Inherited retinal degeneration (IRD) is a heterogeneous group of genetic disorders of variable onset and severity, with vision loss being a common endpoint in most cases. More than 50 distinct IRD phenotypes and over 280 causative genes have been described. Establishing a clinical phenotype for patients with IRD is particularly challenging due to clinical variability even among patients with similar genotypes.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
In this study, we used desert soil from Gansu, China, as a sample to propose a method for designing hyperspectral stealth coatings against desert soil backgrounds within the spectral range of 400-2500 nm, and the corresponding coating was prepared. Firstly, the correlation between the composition and typical spectral detected characteristics of the desert soil was systematically analyzed. It was found that the color and the spectrum of the desert soil in the range of 400-1000 nm were influenced by different types of iron oxides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!