A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Merging and concatenation of sequencing reads: a bioinformatics workflow for the comprehensive profiling of microbiome from amplicon data. | LitMetric

Merging and concatenation of sequencing reads: a bioinformatics workflow for the comprehensive profiling of microbiome from amplicon data.

FEMS Microbiol Lett

CSIR-National Environmental Engineering Research Institute (NEERI), Hyderabad Zonal Centre, CSIR-IICT Campus, Tarnaka, Hyderabad 500007, India.

Published: January 2024

A comprehensive profiling of microbial diversity is essential to understand the ecosystem functions. Universal primer sets such as the 515Y/926R could amplify a part of 16S and 18S rRNA and infer the diversity of prokaryotes and eukaryotes. However, the analyses of mixed sequencing data pose a bioinformatics challenge; the 16S and 18S rRNA sequences need to be separated first and analysed individually/independently due to variations in the amplicon length. This study describes an alternative strategy, a merging and concatenation workflow, to analyse the mixed amplicon data without separating the 16S and 18S rRNA sequences. The workflow was tested with 24 mock community (MC) samples, and the analyses resolved the composition of prokaryotes and eukaryotes adequately. In addition, there was a strong correlation (cor = 0.950; P-value = 4.754e-10) between the observed and expected abundances in the MC samples, which suggests that the computational approach could infer the microbial proportions accurately. Further, 18 samples collected from the Sundarbans mangrove region were analysed as a case study. The analyses identified Proteobacteria, Bacteroidota, Actinobacteriota, Cyanobacteria, and Crenarchaeota as dominant bacterial phyla and eukaryotic divisions such as Metazoa, Gyrista, Cryptophyta, Chlorophyta, and Dinoflagellata were found to be dominant in the samples. Thus, the results support the applicability of the method in environmental microbiome research. The merging and concatenation workflow presented here requires considerably less computational resources and uses widely/commonly used bioinformatics packages, saving researchers analyses time (for equivalent sample numbers, compared to the conventional approach) required to infer the diversity of major microbial domains from mixed amplicon data at comparable accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsle/fnae009DOI Listing

Publication Analysis

Top Keywords

merging concatenation
12
amplicon data
12
16s 18s
12
18s rrna
12
comprehensive profiling
8
infer diversity
8
prokaryotes eukaryotes
8
rrna sequences
8
concatenation workflow
8
mixed amplicon
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!