Environmental awareness is receiving increasing attention in the petroleum industry, especially when associated with chemical agents applied in enhanced oil recovery (EOR) technology. The bio-based surfactant sodium cocoyl alaninate (SCA) is environmentally friendly and can be easily biodegraded, which makes it a promising alternative to traditional surfactants. Herein, the SCA surfactant is proposed as a foaming agent for enhanced oil recovery. Laboratory investigations on the surfactant concentration, foaming performance, microbubble characterization, interfacial tension, and foam-flooding of the traditional surfactants SDS and OP-10 have been conducted. In particular, the anti-salt abilities of these three surfactants have been studied, taking into consideration the reservoir conditions at Bohai Bay Basin, China. The results show that concentrations of 0.20 wt%, 0.20 wt% and 0.50 wt% for SCA, SDS and OP-10, respectively, can achieve optimum foaming ability and foaming stability under formation salinity conditions, and 0.20 wt% SCA achieved the best foaming ability and stability compared to 0.20 wt% SDS and 0.50 wt% OP-10. Sodium fatty acid groups and amino acid groups present in the SCA molecular structure have high surface activities under different salinity conditions, making SCA an excellent anti-salt surfactant for enhanced oil recovery. The microstructure analysis results showed that most of the SCA bubbles were smaller in size, with an average diameter of about 150 μm, and the distribution of SCA bubbles was more uniform, which can reduce the risk of foam coalescence and breakdown. The IFT value of the SCA/oil system was measured to be 0.157 mN m at 101.5 °C, which was the lowest. A lower IFT can make liquid molecules more evenly distributed on the surface, and enhance the elasticity of the foam film. Core-flooding experimental results showed that a 0.30 PV SCA foam and secondary waterflooding can enhance oil recovery by more than 15% after primary waterflooding, which can reduce the mobility ratio from 3.7711 to 1.0211. The more viscous SCA foam caused a greater flow resistance, and effectively reduced the successive water fingering, leading to a more stable driving process to fully displace the remaining oil within the porous media. The bio-based surfactant SCA proposed in this paper has the potential for application in enhanced oil recovery in similar high-salt oil reservoirs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10828935 | PMC |
http://dx.doi.org/10.1039/d3ra07840j | DOI Listing |
ACS Omega
January 2025
State Key Laboratory of Offshore Oil Exploitation, Beijing 100028, China.
Shale barriers negatively impact thermal recovery processes of oil sand or ultraheavy oil, particularly during the rising stage of SAGD, by affecting oil flow, steam chamber evolution, and heat distribution. Existing mathematical models for the rising stage of SAGD often overlook the influence of shale barriers on the evolution of the steam chamber and heat distribution. This study includes experiments to investigate the impact of a single shale barrier above the production well during the rising stage of the SAGD.
View Article and Find Full Text PDFACS Omega
January 2025
Hildebrand Department of Petroleum & Geosystems Engineering, The University of Texas at Austin, 200 E Dean Keeton, Austin, Texas 78712, United States.
Alkali-surfactant-polymer (ASP) flooding can reduce oil-water interfacial tension to ultralow values and mobilize oil in petroleum reservoirs. Surfactant is consumed by adsorption/retention which is significant in clay-rich reservoirs. Alkali can be added to surfactant-polymer formulations to minimize surfactant adsorption.
View Article and Find Full Text PDFACS Omega
January 2025
Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, P. R. China.
Numerous oil-water mixtures produced through industrial production processes and daily activities pollute the ecological environment and pose risks to human health. The development of materials with high oil-water mixture separation efficiency can promote the recycling of oil and water resources and effectively prevent environmental pollution caused by their direct discharge. Most of the current oil-water separation materials consist of foam, aerogel, and other porous materials.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
Water saturation plays a vital role in calculating the volume of hydrocarbon in reservoirs and defining the net pay. It is also essential for designing the well completion. Innacurate water saturation calculation can lead to poor decision-making, significantly affecting the reservoir's development and production, potentially resulting in reduced hydrocarbon oil recovery.
View Article and Find Full Text PDFACS Omega
January 2025
Laboratory of Enhanced Oil Recovery of Education Ministry, Northeast Petroleum University, Daqing, Heilongjiang 163318, China.
Offshore low-permeability reservoirs are mainly composed of complex fault-block structures with poor physical properties, which makes establishing an effective displacement relationship particularly challenging. Hydraulic fracturing assisted oil displacement (HFAD) can effectively increase the oil production of a single well by creating fractures to replenish the producing energy. In this study, the Khristianovich-Geertsma-de Klerk (KGD) model is used to calculate the propagation of vertical fractures, and the flow tube method is used to calculate the two-phase oil-water flow in filtration and seepage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!