A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

BioCARS: Synchrotron facility for probing structural dynamics of biological macromolecules. | LitMetric

AI Article Synopsis

  • A major goal in biomedical science is to understand the internal dynamics of proteins and biological macromolecules to enhance their functions and create new ones.
  • The BioCARS facility at Argonne National Laboratory, developed by Keith Moffat, provides advanced x-ray scattering technologies that allow researchers to observe these dynamics at atomic resolution across various timescales.
  • This review discusses the experimental challenges in studying macromolecular dynamics and outlines the current capabilities at BioCARS, highlighting its significance for advancing the field.

Article Abstract

A major goal in biomedical science is to move beyond static images of proteins and other biological macromolecules to the internal dynamics underlying their function. This level of study is necessary to understand how these molecules work and to engineer new functions and modulators of function. Stemming from a visionary commitment to this problem by Keith Moffat decades ago, a community of structural biologists has now enabled a set of x-ray scattering technologies for observing intramolecular dynamics in biological macromolecules at atomic resolution and over the broad range of timescales over which motions are functionally relevant. Many of these techniques are provided by BioCARS, a cutting-edge synchrotron radiation facility built under Moffat leadership and located at the Advanced Photon Source at Argonne National Laboratory. BioCARS enables experimental studies of molecular dynamics with time resolutions spanning from 100 ps to seconds and provides both time-resolved x-ray crystallography and small- and wide-angle x-ray scattering. Structural changes can be initiated by several methods-UV/Vis pumping with tunable picosecond and nanosecond laser pulses, substrate diffusion, and global perturbations, such as electric field and temperature jumps. Studies of dynamics typically involve subtle perturbations to molecular structures, requiring specialized computational techniques for data processing and interpretation. In this review, we present the challenges in experimental macromolecular dynamics and describe the current state of experimental capabilities at this facility. As Moffat imagined years ago, BioCARS is now positioned to catalyze the scientific community to make fundamental advances in understanding proteins and other complex biological macromolecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10834067PMC
http://dx.doi.org/10.1063/4.0000238DOI Listing

Publication Analysis

Top Keywords

biological macromolecules
16
dynamics biological
8
x-ray scattering
8
dynamics
6
biocars
4
biocars synchrotron
4
synchrotron facility
4
facility probing
4
probing structural
4
structural dynamics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!