Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Samples suitable for electron diffraction studies must satisfy certain characteristics such as having a thickness in the range of 10-100 nm. We report, to our knowledge, the first successful synthesis technique of nanometer-thin sheets of single-crystalline thymine suitable for electron diffraction and spectroscopy studies. This development provides a well-defined system to explore issues related to UV photochemistry of DNA and high intrinsic stability essential to maintaining integrity of genetic information. The crystals are grown using the evaporation technique, and the nanometer-thin sheets are obtained via microtoming. The sample is characterized via x-ray diffraction and is subsequently studied using electron diffraction via a transmission electron microscope. Thymine is found to be more radiation resistant than similar molecular moieties (e.g., carbamazepine) by a factor of 5. This raises interesting questions about the role of the fast relaxation processes of electron scattering-induced excited states, extending the concept of radiation hardening beyond photoexcited states. The high stability of thymine in particular opens the door for further studies of these ultrafast relaxation processes giving rise to the high stability of DNA to UV radiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10834065 | PMC |
http://dx.doi.org/10.1063/4.0000221 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!