The crisp grass carp (CGC; C. et V.), known for its unique texture and flavour, is a culinary delicacy whose quality is significantly influenced by thermal processing. This study employed 4D label-free proteomics and data mining techniques to investigate the proteomic changes in CGC muscle tissue induced by various heating temperatures. CGC samples were subjected to a series of heat treatments at increasing temperatures from 20 °C to 90 °C. Proteins were extracted, digested, and analysed using high-resolution mass spectrometry. The proteomic data were then subjected to extensive bioinformatics analysis, including GO and KEGG pathway enrichment. We identified a total of 1085 proteins, 516 of which were shared across all the temperature treatments, indicating a core proteome responsible for CGC textural properties. Differential expression analysis revealed temperature-dependent changes, with significant alterations observed at 90 °C, suggesting denaturation or aggregation of proteins at higher temperatures. Functional enrichment analysis indicated that proteins involved in amino acid metabolism, glutathione metabolism, and nucleotide metabolism were particularly affected by heat. Textural analysis correlated these proteomic changes with alterations in CGC quality attributes, pinpointing 70 °C as the optimum temperature for maintaining the desired texture. A strong positive correlation between specific upregulated proteins was identified, such as the tubulin alpha chain and collagen alpha-1(IV) chain, and the improved textural properties of CGC during thermal processing, suggesting their potential as the potential biomarkers. This study offers a comprehensive proteomic view of the thermal stability and functionality of CGC proteins, delivering invaluable insights for both the culinary processing and scientific management of CGC. Our findings not only deepen the understanding of the molecular mechanisms underpinning the textural alterations in CGC during thermal processing but also furnish practical insights for the aquaculture industry. These insights could be leveraged to optimize cooking techniques, thereby enhancing the quality and consumer appeal of CGC products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10832373PMC
http://dx.doi.org/10.1016/j.crfs.2024.100681DOI Listing

Publication Analysis

Top Keywords

thermal processing
16
cgc
10
label-free proteomics
8
proteomics data
8
data mining
8
crisp grass
8
grass carp
8
proteomic changes
8
textural properties
8
changes alterations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!