Similar Publications

Benzothiazolium salts as versatile primary alcohol derivatives in Ni-catalyzed cross-electrophile arylation/vinylation.

Org Biomol Chem

January 2025

Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.

Herein, we report a Ni-catalyzed cross-electrophile coupling of aryl/vinyl halides with benzothiazolium salts derived from alcohols. Our findings demonstrate that primary alkyl benzothiazolium salts serve as effective C(sp)-O substrates, facilitating coupling with aryl and vinyl halides. This method not only enables the formal functionalization of primary alcohols but also provides experimental support for previously established sequential alcohol halogenation and Ni-catalyzed reductive coupling platforms.

View Article and Find Full Text PDF
Article Synopsis
  • A new method for the oxidative C-H alkenylation of benzoic acid using [Ru(η-CH)Cl] catalyst has been developed, operating efficiently in water at mild temperatures (60 °C).
  • The reaction shows regioselectivity, producing mono-olefinated products when using activated alkenes like acrylates, while both mono and diolefinated products emerge from unactivated alkenes such as styrene.
  • A novel five-membered cyclic compound was formed from vinylferrocene as a coupling partner, indicating a unique reactivity profile compared to other alkenes.
View Article and Find Full Text PDF

Rhodium(III) catalysis has been used for C-H activation of -nitrosoanilines with substituted allyl alcohols. This method provides an efficient synthesis of the functional -nitroso β-aryl aldehydes and ketones with low catalyst loading, high functional group tolerance, and superior reactivity of allyl alcohols toward -nitrosoanilines. We demonstrated that reaction also proceeds through the one-pot synthesis of -nitrosoaniline, followed by subsequent, C-H activation.

View Article and Find Full Text PDF

Electrochemical Dicarboxylation of Vinyl Epoxide with CO for the Facile and Selective Synthesis of Diacids.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.

We present a novel electrochemical dicarboxylation of epoxides with CO, characterized by the cleavage of two C-O single bonds. Not only are vinyl epoxides viable, but cyclic carbonates also serve as effective substrates, facilitating the synthesis of E-configured adipic and octanedioic acids with high chemo-, regio-, and stereoselectivity. The synthetic practicality is further highlighted by the diverse functionalizations of the resulting multifunctional diacids.

View Article and Find Full Text PDF

Preparation and Characterization of Poly(acrylic acid-co-vinyl imidazole) Hydrogel-Supported Palladium Catalyst for Tsuji-Trost and Suzuki Reactions in Aqueous Media.

Gels

November 2024

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China.

In this study, a novel polyacrylate-co-vinyl imidazole hydrogel-supported palladium (Pd) catalyst (P(AA-co-VI)@Pd) was prepared through heat-initiated polymerization, starting with the formation of a complex between vinyl imidazole and palladium chloride, followed by the addition of 75% neutralized acrylic acid (AA), crosslinking agent, and initiator. The structure and morphology of the catalyst were characterized using ICP-OES, SEM, EDX, Mapping, FT-IR, TGA, XRD, XPS and TEM techniques. It was confirmed that the catalyst exhibited excellent compatibility with water solvent and uniform distribution of Pd.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!