The major histocompatibility complex (MHC), Class-I-related (MR1) molecule presents microbiome-synthesized metabolites to Mucosal-associated invariant T (MAIT) cells, present at sites of herpes simplex virus (HSV) infection. During HSV type 1 (HSV-1) infection there is a profound and rapid loss of MR1, in part due to expression of unique short 3 protein. Here we show that virion host shutoff RNase protein downregulates MR1 protein, through loss of MR1 transcripts. Furthermore, a third viral protein, infected cell protein 22, also downregulates MR1, but not classical MHC-I molecules. This occurs early in the MR1 trafficking pathway through proteasomal degradation. Finally, HSV-2 infection results in the loss of MR1 transcripts, and intracellular and surface MR1 protein, comparable to that seen during HSV-1 infection. Thus HSV coordinates a multifaceted attack on the MR1 antigen presentation pathway, potentially protecting infected cells from MAIT cell T cell receptor-mediated detection at sites of primary infection and reactivation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10831258 | PMC |
http://dx.doi.org/10.1016/j.isci.2024.108801 | DOI Listing |
Alzheimers Dement
January 2025
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Introduction: Plaques are a hallmark feature of Alzheimer's disease (AD). We found that the loss of mucosal-associated invariant T (MAIT) cells and their antigen-presenting molecule MR1 caused a delay in plaque pathology development in AD mouse models. However, it remains unknown how this axis is impacting dystrophic neurites.
View Article and Find Full Text PDFBiomolecules
December 2024
Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
Glycosylphosphatidylinositol (GPI) biosynthesis defect 11 (GPIBD11), part of the heterogeneous group of congenital disorders of glycosylation, is caused by biallelic pathogenic variants in . This rare disorder has previously been described in only 12 patients. We report four novel patients: two sib fetuses with congenital anomalies affecting several organs, including the heart; a living girl with tetralogy of Fallot, global developmental delay, behavioral abnormalities, and atypic electroencephalography (EEG) without epilepsy; a girl with early-onset, treatment-resistant seizures, developmental regression, and recurrent infections, that ultimately passed away prematurely due to pneumonia.
View Article and Find Full Text PDFBiomedicines
July 2024
Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy.
Childs Nerv Syst
November 2024
Pediatric Neurosurgery Unit, Santobono-Pausilipon Children's Hospital, AORN, Naples, Italy.
Purpose: Craniosynostosis (CRS) is a rare congenital cranial malformation in which 1 or more cranial or facial sutures are fused in utero or rapidly fused in early infancy. The cranial sutures separate the skull bone plates and enable rapid growth of the skull in the first 2 years of life, in which growth is largely dictated by growth of the brain. CRS is a rare disease that occurs in 1 in 2100 to 1 in 2500 births and may be either nonsyndromic (also referred to as isolated) or syndromic.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2024
Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
This study reports the development of a textile-based colaminar flow hybrid microbial-enzymatic biofuel cell. MR-1 was used as a biocatalyst on the anode, and bienzymatic system catalysts based on glucose oxidase and horseradish peroxidase were applied on an air-breathing cathode to address the overpotential loss in a body-friendly way. A single-layer Y-shaped channel configuration with a double-inlet was adopted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!