Pinpointing Acidic Residues in Proteins.

ChemMedChem

Department of Chemistry, Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, 300072, P. R. China.

Published: March 2024

AI Article Synopsis

  • Identifying specific protein residues, especially acidic ones like aspartic acid and glutamic acid, is crucial for controlling protein function and enhancing small molecule interactions.
  • Recent advancements by synthetic chemists and biologists focus on harnessing the unique properties of these residues to unlock their potential in various applications.
  • The text emphasizes the progress in utilizing electrophiles, light-induced reactions, and engineered amino acids for manipulating proteins, while also addressing ongoing challenges in this evolving field.

Article Abstract

It is of great importance to pinpoint specific residues or sites of a protein in biological contexts to enable desired mechanism of action for small molecules or to precisely control protein function. In this regard, acidic residues including aspartic acid (Asp) and glutamic acid (Glu) hold great potential due to their great prevalence and unique function. To unlock the largely untapped potential, great efforts have been made recently by synthetic chemists, chemical biologists and pharmacologists. Herein, we would like to highlight the remarkable progress and particularly introduce the electrophiles that exhibit reactivity to carboxylic acids, the light-induced reactivities to carboxylic acids and the genetically encoded noncanonical amino acids that allow protein manipulations at acidic residues. We also comment on certain unresolved challenges, hoping to draw more attention to this rapidly developing area.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.202300623DOI Listing

Publication Analysis

Top Keywords

acidic residues
12
potential great
8
carboxylic acids
8
pinpointing acidic
4
residues
4
residues proteins
4
great
4
proteins great
4
great pinpoint
4
pinpoint specific
4

Similar Publications

Article Synopsis
  • RbpA is a critical protein for Mycobacterium tuberculosis growth, impacting transcription and antibiotic response, but its regulatory mechanisms are not fully understood.
  • Significant structural changes in RNA polymerase occur when it interacts with RbpA, revealing important amino acids for transcription regulation and dynamic behavior of the complex.
  • The study identifies potential ligands for RbpA's interaction site, laying the groundwork for future research on developing inhibitors that target RbpA's regulatory role in transcription.
View Article and Find Full Text PDF

Cryo-EM structure of AAV2 Rep68 bound to integration site AAVS1: insights into the mechanism of DNA melting.

Nucleic Acids Res

January 2025

Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States.

The Rep68 protein from Adeno-Associated Virus (AAV) is a multifunctional SF3 helicase that performs most of the DNA transactions necessary for the viral life cycle. During AAV DNA replication, Rep68 assembles at the origin of replication, catalyzing the DNA melting and nicking reactions during the hairpin rolling replication process to complete the second-strand synthesis of the AAV genome. We report the cryo-electron microscopy structures of Rep68 bound to the adeno-associated virus integration site 1 in different nucleotide-bound states.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of protein aggregates, which are thought to be influenced by posttranslational modifications (PTMs). Dehydroamino acids (DHAAs) are rarely observed PTMs that contain an electrophilic alkene capable of forming protein-protein crosslinks, which may lead to protein aggregation. We report here the discovery of DHAAs in the protein aggregates from AD, constituting an unknown and previously unsuspected source of extensive proteomic complexity.

View Article and Find Full Text PDF

Environmental concerns are rising the need to find cost-effective alternatives to fossil oils. In this sense, short-chain fatty acids (SCFAs) are proposed as carbon source for microbial oils production that can be converted into oleochemicals. This investigation took advantage of the outstanding traits of recombinant Yarrowia lipolytica strains to assess the conversion of SCFAs derived from real digestates into odd-chain fatty acids (OCFA).

View Article and Find Full Text PDF

Molecular mechanism of interaction between SHORT VEGETATIVE PHASE and APETALA1 in Arabidopsis thaliana.

Plant Physiol Biochem

January 2025

Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, People's Republic of China. Electronic address:

Point mutations were introduced into specific leucine (L) amino acids within the K domain of SHORT VEGETATIVE PHASE (SVP), and their effects on the SVP-AP1 interaction were assessed. Yeast two-hybrid experiments and β-galactosidase activity assays demonstrated that SVP maintained its capacity to interact with APETALA1 (AP1) despite point mutations at the 108th, 116th, 119th, and 127th leucine residues, where leucine was substituted with alanine (A). However, the mutation of the leucine residue at position 124 to alanine abolished the interaction between SVP and AP1 regardless of whether the mutation was singular or combined with others.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!