Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful tools in analytical chemistry. An important step in the analysis of NMR data is the assignment of resonance frequencies to the corresponding atoms in the molecule being investigated. The traditional approach considers the spectrum's characteristic parameters: chemical shift values, internuclear couplings, and peak intensities. In this paper, we show how to support the process of assigning a series of spectra of similar organic compounds by using temperature coefficients, that is, the rates of change in chemical shift values associated with given changes in temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrc.5433 | DOI Listing |
Chem Asian J
January 2025
IISc: Indian Institute of Science, Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, 560012, Bangalore, INDIA.
In this study, we report the design and development of a stable fluorescent probe that is selectively localized in the cytosol of Hela cells. We designed two probes, 1 and 2, with D-π-A (carbazole (Cbz)-vinyl-naphthalimide (NPI)) and A-π-D-π-A (NPI-vinyl-Cbz-vinyl-NPI) architecture, respectively. Probes 1 and 2 exhibit broad photoluminescence (PL) spectra ranging from green (550 nm) to far-red (800 nm) in solutions and aggregated states.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
Amino acids and dipicolinic acid (DPA) are important biomarkers for identifying human health. Establishing rapid, accurate, sensitive, and simple assays is essential for disease prevention and early diagnosis. In this work, a novel Zn(II) metal-organic framework (MOF) with the formula {[Zn(μ-OH)(BTDI)(dpp)]·dpp·4HO·2DMF} (, where denotes Jiangxi University of Science and Technology, HBTDI = 5,5'-(benzo[][1,2,5]thiadiazole-4,7-diyl)diisophthalic acid; dpp = 1,3-di(4-pyridyl)propane) was successfully synthesized via a mixed-ligands strategy.
View Article and Find Full Text PDFALTEX
January 2025
National Institutes of Health, National Institute for Environmental Health Sciences, DTT/NICEATM, Durham, NC, USA.
The integration of artificial intelligence (AI) into new approach methods (NAMs) for toxicology rep-resents a paradigm shift in chemical safety assessment. Harnessing AI appropriately has enormous potential to streamline validation efforts. This review explores the challenges, opportunities, and future directions for validating AI-based NAMs, highlighting their transformative potential while acknowledging the complexities involved in their implementation and acceptance.
View Article and Find Full Text PDFWater Sci Technol
January 2025
Zhijiang High tech Zone Yaojiagang Chemical Park Service Center, Yichang, China.
sp. strain p52, an aerobic dioxin degrader, was capable of utilizing petroleum hydrocarbons as the sole sources of carbon and energy for growth. In the present study, the degradation of the mixture of aliphatic hydrocarbons (hexadecane and tetradecane) and aromatic hydrocarbons (phenanthrene and anthracene) by strain p52 was examined.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
ConspectusFor chemical reactions with complex pathways, it is extremely difficult to adjust the catalytic performance. The previous strategies on this issue mainly focused on modifying the fine structures of the catalysts, including optimization of the geometric/electronic structure of the metal nanoparticles (NPs), regulation of the chemical composition/morphology of the supports, and/or adjustment of the metal-support interactions to modulate the reaction kinetics on the catalyst surface. Although significant advances have been achieved, the catalytic performance is still unsatisfactory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!