AI Article Synopsis

  • Machine learning (ML) models were developed and tested on nearly 1,700 NAFLD/MASLD patients to improve the detection of significant fibrosis (SF) compared to traditional scoring methods like FIB-4.
  • The study found that ML models performed 7%-12% better than FIB-4, with an optimized random forest model achieving the highest accuracy in identifying patients with SF.
  • Effective use of simple blood tests and ML can significantly enhance patient screening, reducing unnecessary referrals and missed diagnoses in patients with non-alcoholic fatty liver disease.

Article Abstract

Background: The precise estimation of cases with significant fibrosis (SF) is an unmet goal in non-alcoholic fatty liver disease (NAFLD/MASLD).

Aims: We evaluated the performance of machine learning (ML) and non-patented scores for ruling out SF among NAFLD/MASLD patients.

Methods: Twenty-one ML models were trained (N = 1153), tested (N = 283), and validated (N = 220) on clinical and biochemical parameters of histologically-proven NAFLD/MASLD patients (N = 1656) collected across 14 centres in 8 Asian countries. Their performance for detecting histological-SF (≥F2fibrosis) were evaluated with APRI, FIB4, NFS, BARD, and SAFE (NPV/F1-score as model-selection criteria).

Results: Patients aged 47 years (median), 54.6% males, 73.7% with metabolic syndrome, and 32.9% with histological-SF were included in the study. Patients with SFvs.no-SF had higher age, aminotransferases, fasting plasma glucose, metabolic syndrome, uncontrolled diabetes, and NAFLD activity score (p < 0.001, each). ML models showed 7%-12% better discrimination than FIB-4 to detect SF. Optimised random forest (RF) yielded best NPV/F1 in overall set (0.947/0.754), test set (0.798/0.588) and validation set (0.852/0.559), as compared to FIB4 in overall set (0.744/0.499), test set (0.722/0.456), and validation set (0.806/0.507). Compared to FIB-4, RF could pick 10 times more patients with SF, reduce unnecessary referrals by 28%, and prevent missed referrals by 78%. Age, AST, ALT fasting plasma glucose, and platelet count were top features determining the SF. Sequential use of SAFE < 140 and FIB4 < 1.2 (when SAFE > 140) was next best in ruling out SF (NPV of 0.757, 0.724 and 0.827 in overall, test and validation set).

Conclusions: ML with clinical, anthropometric data and simple blood investigations perform better than FIB-4 for ruling out SF in biopsy-proven Asian NAFLD/MASLD patients.

Download full-text PDF

Source
http://dx.doi.org/10.1111/apt.17891DOI Listing

Publication Analysis

Top Keywords

machine learning
8
liver disease
8
metabolic syndrome
8
learning improves
4
improves prediction
4
prediction fibrosis
4
fibrosis asian
4
patients
4
asian patients
4
patients metabolic
4

Similar Publications

Who is coming in? Evaluation of physician performance within multi-physician emergency departments.

Am J Emerg Med

January 2025

Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA; Center for Outcomes Research and Evaluation, Yale University, New Haven, CT, USA.

Background: This study aimed to examine how physician performance metrics are affected by the speed of other attendings (co-attendings) concurrently staffing the ED.

Methods: A retrospective study was conducted using patient data from two EDs between January-2018 and February-2020. Machine learning was used to predict patient length of stay (LOS) conditional on being assigned a physician of average speed, using patient- and departmental-level variables.

View Article and Find Full Text PDF

Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.

View Article and Find Full Text PDF

Prediction of Thermodynamic Properties of C-Based Fullerenols Using Machine Learning.

J Chem Theory Comput

January 2025

Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.

Traditional machine learning methods face significant challenges in predicting the properties of highly symmetric molecules. In this study, we developed a machine learning model based on graph neural networks (GNNs) to accurately and swiftly predict the thermodynamic and photochemical properties of fullerenols, such as C(OH) ( = 1 to 30). First, we established a global method for generating fullerenol isomers through isomer fingerprinting, which can generate all possible isomers or produce diverse structural types on demand.

View Article and Find Full Text PDF

This study investigates the geochemical characteristics of rare earth elements (REEs) in highland karstic bauxite deposits located in the Sierra de Bahoruco, Pedernales Province, Dominican Republic. These deposits, formed through intense weathering of volcanic material, represent a potentially valuable REE resource for the nation. Surface and subsurface soil samples were analyzed using portable X-ray fluorescence (pXRF) and a NixPro 2 color sensor validated with inductively coupled plasma optical emission spectrometry (ICP-OES).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!