Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, we investigate the dynamic behavior of a modified Leslie-Gower predator-prey model with the Allee effect on both prey and predator. It is shown that the model has at most two positive equilibria, where one is always a hyperbolic saddle and the other is a weak focus with multiplicity of at least three by concrete example. In addition, we analyze the bifurcations of the system, including saddle-node bifurcation, Hopf bifurcation and Bogdanov-Takens bifurcation. The results show that the model has a cusp of codimension three and undergoes a Bogdanov-Takens bifurcation of codimension two. The system undergoes a degenerate Hopf bifurcation and has two limit cycles (the inner one is stable and the outer one is unstable). These enrich the dynamics of the modified Leslie-Gower predator-prey model with the double Allee effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2024034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!