Background: The house fly, Musca domestica, is a significant carrier of diseases that can impact public health. Repeated use of pyrethroid insecticides may act as a selection pressure for mutations and amino acid substitutions in the house fly voltage-sensitive sodium channel (VSSC), which ultimately confers resistance. The objectives of this study were to determine the presence of knockdown resistance (kdr) mutations using molecular tools and to set up a CDC bottle bioassay specific for house flies in the United Arab Emirates (UAE) to screen for deltamethrin resistance.

Methods: Adult flies were collected from 19 locations in Abu Dhabi, UAE, and DNA was extracted, followed by PCR amplification of specific alleles (PASA) and conventional PCR using several primers to amplify regions of the VSSC gene. Sanger sequencing was performed on PCR products. We also designed primers that detect four kdr mutations using complementary DNA (cDNA) in reverse transcriptase (RT)-PCR followed by Sanger sequencing. Additionally, a CDC bottle bioassay was set up for detecting deltamethrin resistance in adult house flies.

Results: In PASA, the primers successfully amplified the target bands (480, 280 and 200 bp). The kdr allele was found in flies collected from 18 of the 19 locations, at the highest and lowest prevalence of 46.9% and 9.4%, respectively. Resistant homozygous (RR) insects constituted 5.0% of the tested populations, and heterozygous (RS) insects accounted for 36.5%. The RR genotype was prevalent in house flies collected at 10 of 19 sampling locations. House fly populations were mostly in Hardy-Weinberg equilibrium, except in three locations. In addition to verifying the presence of the previously identified kdr mutation L1014F, in this study we detected two kdr mutations, L1014H and T929I, that have not previously been reported in the UAE. Also, for the first time in the UAE, a CDC bottle bioassay for deltamethrin resistance was used, which found that 60 min and 4.5 µg/ml were the diagnostic time and dose, respectively. Using this assay, we detected deltamethrin resistance in house flies from two of 16 locations, with a resistance level of 12.5%.

Conclusions: Using DNA sequencing, we confirmed the presence of a known kdr mutation and uncovered two new kdr mutations in house flies from Abu Dhabi. Additionally, we detected deltamethrin resistance in these flies using a CDC bottle bioassay. Further research is recommended to comprehensively identify more kdr mutations in UAE house fly populations and assess their impacts on control strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10832251PMC
http://dx.doi.org/10.1186/s13071-024-06128-5DOI Listing

Publication Analysis

Top Keywords

kdr mutations
24
deltamethrin resistance
20
house flies
20
house fly
16
cdc bottle
16
bottle bioassay
16
abu dhabi
12
flies collected
12
house
10
kdr
9

Similar Publications

Background: The risk of mosquito-borne disease transmission is increasing in temperate climates with the colonization and proliferation of the Asian tiger mosquito vector Aedes albopictus and the rapid mass transport of passengers returning from tropical regions where viruses are endemic. The prevention of major Aedes-borne viruses heavily relies on the use of insecticides for vector control, mainly pyrethroids. In Europe, only deltamethrin is authorized.

View Article and Find Full Text PDF

Agricultural pesticides may play a crucial role in the selection of resistance in field populations of mosquito vectors. This study aimed to determine the susceptibility level of s.l.

View Article and Find Full Text PDF

Evaluation of Protocols for DNA Extraction from Individual to Assess Pyrethroid Resistance Using Genotyping Real-Time Polymerase Chain Reaction.

Methods Protoc

December 2024

General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy.

is a major vector of pathogens, including West Nile and Usutu viruses, that poses a significant public health risk. Monitoring pyrethroid resistance in mosquito populations is essential for effective vector control. This study aims to evaluate four DNA extraction protocols-QIAsymphony, DNAzol Direct reagent, PrepMan Ultra Sample Preparation Reagent (USPR), and Chelex 100-to identify an optimal method to extract DNA from individual , as part of a high-throughput surveillance of pyrethroid resistance using Real-Time Genotyping PCR.

View Article and Find Full Text PDF

Malaria remains a major public health threat in Burkina Faso, as in most sub-Saharan Africa countries. Malaria control relies mainly on long-lasting insecticide-treated nets (LLINs) and indoor residual spraying. In Burkina Faso, an escalating of insecticide resistance has been observed over the last decades.

View Article and Find Full Text PDF

Background: Insecticide-based malaria vector control has been implemented on the islands of São Tomé and Príncipe (STP) for more than 20 years. During this period malaria incidence was significantly reduced to pre-elimination levels. While cases remained low since 2015, these have significantly increased in the last year, challenging the commitment of the country to achieve malaria elimination by 2025.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!