CsIn(InSe)(PSe): A Multi-Chromophore Chalcogenide with Excellent Nonlinear Optical Property Designed by Group Grafting.

Angew Chem Int Ed Engl

Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.

Published: April 2024

Non-centrosymmetric (NCS) and polar materials capable of exhibiting many important functional properties are indispensable for electro-optical technologies, yet their rational structural design remains a significant challenge. Here, we report a "group grafting" strategy for designing the first multi-chromophore selenophosphate, CsIn(InSe)(PSe), that crystallizes in a NCS and polar space group of Cm. The structure features a unique basic building unit (BBU) [In(InSe)(PSe)], formed through "grafting [InSe] supertetrahedra on the root of [In(PSe)] groups". Theoretical calculations confirm that this [In(InSe)(PSe)] BBU can achieve a "1+1>2" combination of properties from two chromophores, [InSe] supertetrahedron and ethane-like [PSe] dimer. That makes CsIn(InSe)(PSe) exhibit excellent linear and nonlinear optical (NLO) properties, including a strong second harmonic generation (SHG) response (~6×AgGaS), a large band gap (2.45 eV), broad infrared (IR) transmission (up to 19.5 μm), a significant birefringence (0.26 @1064 nm) as well as the congruently-melting property at ~700 °C. Therefore, CsIn(InSe)(PSe) will be a promising NLO crystal, especially in the IR region, and this research also demonstrates that "group grafting" will be an effective strategy for constructing novel polar BBUs with multi-chromophore to design NCS structures and high-performance IR NLO materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202400892DOI Listing

Publication Analysis

Top Keywords

nonlinear optical
8
ncs polar
8
"group grafting"
8
csininsepse
4
csininsepse multi-chromophore
4
multi-chromophore chalcogenide
4
chalcogenide excellent
4
excellent nonlinear
4
optical property
4
property designed
4

Similar Publications

An ultrafast algorithm for ultrafast time-resolved coherent Raman spectroscopy.

Commun Chem

January 2025

Energy & Materials Transition, Netherlands Organization for Applied Scientific Research (TNO), Urmonderbaan 22, Geleen, 6167RD, The Netherlands.

Time-resolved coherent Raman spectroscopy (CRS) is a powerful non-linear optical technique for quantitative, in-situ analysis of chemically reacting flows, offering unparalleled accuracy and exceptional spatiotemporal resolution. Its application to large polyatomic molecules, crucial for understanding reaction dynamics, has thus far been limited by the complexity of their rotational-vibrational Raman spectra. Progress in developing comprehensive spectral codes for these molecules, a longstanding goal, has been hindered by prohibitively long computation times required for their spectral synthesis.

View Article and Find Full Text PDF

We report a nonlinear terahertz (THz) detection device based on a metallic bull's-eye plasmonic antenna. The antenna, fabricated with femtosecond laser direct writing and deposited on a nonlinear gallium phosphide (GaP) crystal, focuses incoming THz waveforms within the sub-wavelength bull's eye region to locally enhance the THz field. Additionally, the plasmonic structure minimizes diffraction effects allowing a relatively long interaction length between the transmitted THz field and the co-propagating near-infrared gating pulse used in an electro-optic sampling configuration.

View Article and Find Full Text PDF

Supercontinuum generation in scintillator crystals.

Sci Rep

January 2025

Laser Research Center, Vilnius University, Saulėtekio Avenue 10, LT-10223, Vilnius, Lithuania.

We present a comparative experimental study of supercontinuum generation in undoped scintillator crystals: bismuth germanate (BGO), yttrium orthosilicate (YSO), lutetium oxyorthosilicate (LSO), lutetium yttrium oxyorthosilicate (LYSO) and gadolinium gallium garnet (GGG), pumped by 180 fs fundamental harmonic pulses of an amplified Yb:KGW laser. In addition to these materials, experiments in yttrium aluminium garnet (YAG), potassium gadolinium tungstate (KGW) and lithium tantalate (LT) were performed under identical experimental settings (focusing geometry and sample thickness), which served for straightforward comparison of supercontinuum generation performances. The threshold and optimal (that produces optimized red-shifted spectral extent) pump pulse energies for supercontinuum generation were evaluated from detailed measurements of spectral broadening dynamics.

View Article and Find Full Text PDF

Finding novel efficient nonlinear optical materials with large second-order nonlinearity for the UV spectral range remains a formidable challenge, especially for silicate systems. Using a high-temperature solid reaction in a tight vacuum environment, two ultraviolet nonlinear optical materials with a moderate second harmonic generation (SHG) response have been created: PbSiOC and PbCaSiO. The SHG values they computed are roughly 2.

View Article and Find Full Text PDF

Charge transport in materials has an impact on a wide range of devices based on semiconductor, battery, or superconductor technology. Charge transport in sliding charge density waves (CDW) differs from all others in that the atomic lattice is directly involved in the transport process. To obtain an overall picture of the structural changes associated to the collective transport, the large coherent x-ray beam generated by an x-ray free-electron laser (XFEL) source was used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!