High-performance lead-free Barium Zirconium Titanate (BZT) based ceramics have emerged as a potential candidate for applications in energy storage, catalysis for electro chemical energy conversion and energy harvesting devices as presented in this work. In the present study hybrid microwave sintered BZT are studied for dielectric, ferroelectric and phase transition properties. BZT ceramic exhibits tetragonal structure as confirmed by the Retvield refinement studies. XPS studies confirms the elemental composition of BZT and presence of Zr. Polarization versus electric field hysteresis loops confirms the ferroelectric behaviour of BZT ceramic. Encouragingly, the BZT showed a moderate energy storage efficiency of 30.7 % and relatively good electro chemical energy conversion (HER). Excellent catalytic activity observed for BZT electrode in acid medium with low Tafel slope 77 mV dec-1. Furthermore, electrospun nanofibers made of PVDF-HFP and BZT are used to make flexible piezoelectric nano generators (PENGs). FTIR studies show that the 16 wt% BZT composite ink exhibits a higher electroactive beta phase. The optimized open-circuit voltage and short circuit current of the flexible PENG exhibits 7Vpp and 750 nA under an applied force of 3N. Thus, flexible and self-powered BZT PENGs are alternative source of energy due to its reliability, affordability and environmental-friendly nature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10834441PMC
http://dx.doi.org/10.1038/s41598-024-52705-0DOI Listing

Publication Analysis

Top Keywords

energy storage
12
bzt
12
energy
8
bzt flexible
8
energy harvesting
8
electro chemical
8
chemical energy
8
energy conversion
8
bzt ceramic
8
storage catalytic
4

Similar Publications

The magnetically suspended flywheel energy storage system (MS-FESS) is an energy storage equipment that accomplishes the bidirectional transfer between electric energy and kinetic energy, and it is widely used as the power conversion unit in the uninterrupted power supply (UPS) system. First, the structure of the FESS-UPS system is introduced, and the working principles at different working states are described. Furthermore, the control strategy of the FESS-UPS is developed, and the switch oscillation of the FESS-UPS system between the charging and discharging states is analyzed.

View Article and Find Full Text PDF

Adaptive Phase Change Microcapsules for Efficient Sustainable Cooling.

ACS Appl Mater Interfaces

January 2025

School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China.

Passive radiative cooling has recently gained significant attention as a highly promising technology that offers a zero-energy and electricity-free solution to tackle the pressing issue of global warming. Nevertheless, research efforts have predominantly focused on enhancing daytime and hot-day radiative cooling efficacy, often neglecting the potential downsides associated with excessive cooling and the consequent increased heating expenses during cold nights and winter days. Herein, we demonstrate a micro-nanostructured engineered composite film that synergistically integrates room-temperature adaptive silica-shell/oil-core phase change microcapsules (S-PCMs) with commercially available cellulose fibers.

View Article and Find Full Text PDF

Intermetallic Layers with Tuned Na Nucleation and Transport for Anode-Free Sodium Metal Batteries.

Nano Lett

January 2025

Department of Applied Physics and Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China.

Sodium metal batteries without pre-deposited Na (anode-free) and with a limited amount of Na metal (anode-less) have attracted increasing attention due to their competitive energy density and the high abundance of sodium. However, severe interfacial issues result in poor cycling stability and low Coulombic efficiency. Here, the lightweight interphase layers composed of intermetallic nanoparticles (Sn-Cu and Sn-Ni) are applied to improve Na plating/stripping behaviors.

View Article and Find Full Text PDF

Objective: Pulse parameter controllable transcranial magnetic stimulation (cTMS) devices with fully-controlled semiconductor switches are increasingly being developed, but the primary waveform they generate is often accompanied by ringing, which is due to the resonance between the stimulation coil inductance and the snubber capacitors paired with the switches at the end of the pulse. This study provides a ringing suppression design method to effectively suppress it and reduce its impact on stimulation efficacy.

Methods: A three-pronged design method is developed to suppress the ringing at its source.

View Article and Find Full Text PDF

Microplastics (MPs) are produced from various primary and secondary sources and pose multifaceted environmental problems. They are of non-biodegradable nature and may stay in aquatic environments for a long time period. The present review has covered novel aspects pertaining to MPs that were not covered in earlier studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!