The evaluation of Weather Research and Forecasting (WRF) model has been performed for simulating episodic Heat Wave (HW) events of 2015 and 2016 with varied horizontal resolutions of 27 km for the entire India (d01), 9 km for the North West (NW (d02)) and South East (SE (d03)) domain. Study compares the maximum temperature (T) simulated by WRF model, using six different combination of parameterization schemes, with observations from the India Meteorological Department (IMD) during the HW events. Among the six experiments, Exp2 (i.e., combination of WSM6 microphysics (MP) together with radiation parameterization CAM, Yonsei (PBL), NOAH land surface and Grell-3D convective schemes) is found closest to the observations in reproducing the temperature. The model exhibits an uncertainty of ± 2 °C in maximum temperature (T) for both the regions, suggesting regional temperature is influenced by the location and complex orography. Overall, statistical results reveal that the best performance is achieved with Exp2. Further, to understand the dynamics of rising HW intensity, two case studies of HW days along with influencing parameters like T, RH and prevailing wind distribution have been simulated. Model simulated T during 2015 reaches up to 44 °C in NW and SE part of India. In 2016, HW is more prevailing towards NW, while in SE region T reaches upto 34-38 °C with high RH (60-85%). The comparative research made it abundantly evident that these episodic events are unique in terms of duration and geographical spread which can be used to assess the WRF performance for future projections of HW.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10834968 | PMC |
http://dx.doi.org/10.1038/s41598-024-52541-2 | DOI Listing |
Environ Res
January 2025
Henan Key Laboratory of Air Pollution Control and Ecological Security, Henan University, Kaifeng, Henan, 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, Henan, 475004, China. Electronic address:
Dust aerosols significantly impact climate, human health, and ecosystems, but how land cover (LC) changes influence dust concentrations remains unclear. Here, we applied the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to assess the effects of LC changes on dust aerosol concentrations from 2000 to 2020 in northern China. Based on LC data derived from multi-source satellite remote sensing data, we conducted two simulation scenarios: one incorporating actual annual LC changes and another assuming static LC since 2000.
View Article and Find Full Text PDFInsects
December 2024
The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
The beet armyworm (Hübner), a global pest, feeds on and affects a wide range of crops. Its long-distance migration with the East Asian monsoon frequently causes large-scale outbreaks in East and Southeast Asia. This pest mainly breeds in tropical regions in the winter season every year; however, few studies have investigated associations with its population movements in this region.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Environmental Science & Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134.
Wastewater receives per- and polyfluoroalkyl substances (PFAS) from diverse consumer and industrial sources, and discharges are known to be a concern for drinking water quality. The PFAS family includes thousands of potential chemical structures containing organofluorine moieties. Exposures to a few well-studied PFAS, mainly perfluoroalkyl acids (PFAA), have been associated with increased risk of many adverse health outcomes, prompting federal drinking water regulations for six compounds in 2024.
View Article and Find Full Text PDFPhytomedicine
December 2024
School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China. Electronic address:
Background: Changan Granule (CAG) is a drug product developed from a traditional Chinese medicine (TCM) empirical prescription for diarrhea-predominant irritable bowel syndrome (IBS-D). The action mechanism and effective compounds of CAG in the treatment of IBS-D are not well understood.
Purpose: This study aimed to investigate the effectiveness, action mechanism and effective compounds of CAG for treating IBS-D.
Sci Rep
January 2025
Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350117, China.
Global warming has profound effects on precipitation patterns, leading to more frequent and extreme precipitation events over the world. These changes pose significant challenges to the sustainable development of socio-economic and ecological environments. This study evaluated the performance of the new generation of the mesoscale Weather Research and Forecasting (WRF) model in simulating long-term extreme precipitation events over the Minjiang River Basin (MRB) of China from 1981 to 2020.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!