A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stronger genetic differentiation among within-population genetic groups than among populations in Scots pine provides new insights into within-population genetic structuring. | LitMetric

We investigated the presence of spatial genetic groups within forest tree populations and determined if the genetic divergence among these groups is greater than that between populations using Scots pine (Pinus sylvestris) as a model species. We genotyped 890 adult trees of Scots pine in six natural populations in Lithuania at 11 nuclear microsatellite loci. We used a Bayesian clustering approach to identify the within-population genetic groups within each of the six populations. We calculated the differentiation indexes among the genetic groups within each population and among the six populations by ignoring the genetic groups. The Bayesian clustering revealed 2 to 6 distinct genetic groups of varying size as the most likely genetic structures within populations. The genetic differentiation indexes among the genetic groups within populations were nearly tenfold greater (F = 0.012-0.070) than those between the populations (F = 0.003). We conclude on the existence of markedly stronger structuring of genetic variation within populations than between populations of Scots pine in large forest tracts of northern Europe. Such genetic structures serve as a contributing factor to large within population genetic diversity in northern conifers. We assume that within population mating in Scots pine is not completely random but rather is stratified into genetic clusters. Our study provides pioneering novel key insights into structuring of genetic variation within populations. Our findings have implications for examining within-population genetic diversity and genetic structure, conservation, and management of genetic resources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10834436PMC
http://dx.doi.org/10.1038/s41598-024-52769-yDOI Listing

Publication Analysis

Top Keywords

genetic groups
28
scots pine
20
genetic
19
within-population genetic
16
populations
12
groups populations
12
populations scots
12
genetic differentiation
8
groups
8
bayesian clustering
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!