Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Deep learning-based molecular design has recently gained significant attention. While numerous DL-based generative models have been successfully developed for designing novel compounds, the majority of the generated molecules lack sufficiently novel scaffolds or high drug-like profiles. The aforementioned issues may not be fully captured by commonly used metrics for the assessment of molecular generative models, such as novelty, diversity, and quantitative estimation of the drug-likeness score. To address these limitations, we proposed a genetic algorithm-guided generative model called GARel (genetic algorithm-based receptor-ligand interaction generator), a novel framework for training a DL-based generative model to produce drug-like molecules with novel scaffolds. To efficiently train the GARel model, we utilized dense net to update the parameters based on molecules with novel scaffolds and drug-like features. To demonstrate the capability of the GARel model, we used it to design inhibitors for three targets: AA2AR, EGFR, and SARS-Cov2. The results indicate that GARel-generated molecules feature more diverse and novel scaffolds and possess more desirable physicochemical properties and favorable docking scores. Compared with other generative models, GARel makes significant progress in balancing novelty and drug-likeness, providing a promising direction for the further development of DL-based design methodology with potential impacts on drug discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.3c01964 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!