Targeting a cardiac abundant and fibroblasts-specific piRNA (CFRPi) to attenuate and reverse cardiac fibrosis in pressure-overloaded heart failure.

Transl Res

Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China; Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China. Electronic address:

Published: May 2024

Cardiac fibrosis under chronic pressure overload is an end-stage adverse remodeling of heart. However, current heart failure treatments barely focus on anti-fibrosis and the effects are limited. We aimed to seek for a cardiac abundant and cardiac fibrosis specific piRNA, exploring its underlying mechanism and therapeutic potential. Whole transcriptome sequencing and the following verification experiments identified a highly upregulated piRNA (piRNA-000691) in transverse aortic constriction (TAC) mice, TAC pig, and heart failure human samples, which was abundant in heart and specifically expressed in cardiac fibroblasts. CFRPi was gradually increased along with the progression of heart failure, which was illustrated to promote cardiac fibrosis by gain- and loss-of-function experiments in vitro and in vivo. Knockdown of CFRPi in mice alleviated cardiac fibrosis, reversed decline of systolic and diastolic functions from TAC 6 weeks to 8 weeks. Mechanistically, CFRPi inhibited APLN, a protective peptide that increased in early response and became exhausted at late stage. Knockdown of APLN in vitro notably aggravated cardiac fibroblasts activation and proliferation. In vitro and in vivo evidence both indicated Pi3k-AKT-mTOR as the downstream effector pathway of CFRPi-APLN interaction. Collectively, we here identified CFPPi as a heart abundant and cardiac fibrosis specific piRNA. Targeting CFRPi resulted in a sustainable increase of APLN and showed promising therapeutical prospect to alleviate fibrosis, rescue late-stage cardiac dysfunction, and prevent heart failure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.trsl.2024.01.003DOI Listing

Publication Analysis

Top Keywords

cardiac fibrosis
24
heart failure
20
cardiac
10
cardiac abundant
8
heart
8
abundant cardiac
8
fibrosis specific
8
specific pirna
8
cardiac fibroblasts
8
vitro vivo
8

Similar Publications

The mineralocorticoid receptor (MR) is a nuclear transcription factor that plays a critical role in regulating fluid, electrolytes, blood pressure, and hemodynamic stability. In conditions such as chronic kidney disease (CKD) and heart failure (HF), MR overactivation leads to increased salt and water retention, inflammatory and fibrotic gene expression, and organ injury. The MR is essential for transcriptional regulation and is implicated in metabolic, proinflammatory, and pro-fibrotic pathways.

View Article and Find Full Text PDF

Unicuspid unicommissural aortic valves: A surgical pathology analysis.

Indian J Pathol Microbiol

January 2025

Department of Pathology (Cardiovascular and Thoracic Division), Seth GS Medical College Mumbai, Maharashtra, India.

The unicuspid unicommisural aortic valve is an uncommon congenital malformation that often manifests as stenosis with or without regurgitation in adults in their third to fifth decades of life. This report characterizes the morphological features of surgically excised unicuspid valves in adults with clinical correlation. Among the surgically excised aortic valves over a period of 10 years, the clinical data and morphological features of unicuspid aortic valves were analyzed.

View Article and Find Full Text PDF

Background: Cardiac fibrosis plays a critical role in the progression of various forms of heart disease, significantly increasing the risk of sudden cardiac death. However, currently, there are no therapeutic strategies available to prevent the onset of cardiac fibrosis.

Methods And Results: Here, biomimetic ATP-responsive nanozymes based on genetically engineered cell membranes are adapted to specifically recognize activated cardiac fibroblasts (CFs) for the treatment of cardiac fibrosis.

View Article and Find Full Text PDF

Introduction: Cardiac tamponade is a life-threatening condition resulting from fluid accumulation in the pericardial sac, leading to decreased cardiac output and shock. Various etiologies can cause cardiac tamponade, including liver cirrhosis, which may be induced by autoimmune hepatitis. Autoimmune hepatitis is a chronic inflammatory liver disease characterized by interface hepatitis, elevated transaminase levels, autoantibodies, and increased immunoglobulin G levels.

View Article and Find Full Text PDF

Left ventricular hypertrophy in young hypertensives: the possible crosstalk of mTOR and angiotensin-II -a case-control study.

BMC Cardiovasc Disord

January 2025

Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria.

Background: Hypertension is a major cause of cardiac dysfunction. The earliest manifestation is left ventricular remodeling/hypertrophy. The occurrence of adverse cardiac remodeling and outcomes occurs irrespective of age in blacks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!