Background: Resting-state functional connectivity analysis has been used to study disruptions in neural circuitries underlying eating disorder symptoms. Research has shown resting-state functional connectivity to be altered during the acute phase of anorexia nervosa (AN), but little is known about the biological mechanisms underlying neural changes associated with weight restoration. The goal of the current study was to investigate longitudinal changes in regional homogeneity (ReHo) among neighboring voxels, degree centrality (DC) (a voxelwise whole brain correlation coefficient), voxel-mirrored homotopic connectivity (VMHC) (measuring the synchronization between hemispheres), and the fractional amplitude of low-frequency fluctuations associated with weight gain during AN treatment.
Methods: Resting-state functional connectivity data were acquired and analyzed from a sample of 174 female volunteers: 87 underweight patients with AN that were scanned before treatment and again after at least 12% body mass index increase, as well as 87 age-matched healthy control participants.
Results: Longitudinal changes in ReHo, DC, VMHC, and the fractional amplitude of low-frequency fluctuations were observed in most regions identified to differ between patients with AN before treatment and healthy control participants. However, the degree of normalization varied for each parameter, ranging from 9% of all clusters in DC to 66% in VMHC. Longitudinal changes in ReHo and VMHC showed a linear association weight gain.
Conclusions: Resting-state functional magnetic resonance imaging measures, including ReHo, DC, VMHC, and the fractional amplitude of low-frequency fluctuations, show varying degrees of recovery after short-term weight restoration. Although only some of these changes were related to weight gain, our results provide an overall positive message, suggesting that weight restoration is associated with changes in functional brain measures that point toward normalization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bpsc.2024.01.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!