Climate change has led to an increase in high ambient temperatures, causing extreme heat events worldwide. According to the World Meteorological Organization (WMO), July 2023 marked a historic milestone as the Earth reached its hottest recorded temperature, precisely hitting the critical threshold of 1.5 °C set by the Paris Agreement. This distressing development led to a stark warning from the United Nations, signaling the dawn of what they call "an era of global boiling". The increasing global temperatures can result in high heat stress which leads to various physiological and biochemical alterations in the human body. Given that cardiovascular diseases (CVDs) are a leading cause of morbidity and mortality globally, heat events exacerbate this public health issue. While clinical and in-vitro studies have suggested a range of pathophysiological and biochemical mechanisms underlying the body's response to heat stress, the complex nature of organ-system level interactions makes precise investigation challenging. To address this knowledge gap effectively, the use of animal models exposed to acute or chronic heat stress can be invaluable. These models can closely replicate the multifaceted effects observed in humans during heat stress conditions. Despite extensive independent reviews, limited focus has been shed on the high heat-induced cardiovascular complications and their mechanisms, particularly utilizing animal models. Therefore, in this comprehensive review, we highlight the crucial biomarkers altered during heat stress, contributing significantly to various CVDs. We explore potential mechanisms underlying heat-induced cardiovascular dysfunction and damage, delving into various animal models. While traditional rodent models are commonly employed, we also examine less conventional models, including ruminants, broilers, canines, and primates. Furthermore, we delve into various potential therapeutic approaches and preventive measures. These insights hold significant promise for the development of more effective clinical interventions against the effects of heat stress on the human cardiovascular system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.118315DOI Listing

Publication Analysis

Top Keywords

heat stress
24
heat events
12
animal models
12
heat
9
mechanisms underlying
8
heat-induced cardiovascular
8
stress
6
models
6
cardiovascular
5
"unravelling impacts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!