A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Two birds with one stone: One-pot concurrent Ta-doping and -coating on Ni-rich LiNiCoMnO cathode materials with fiber-type microstructure and Li-conducting layer formation. | LitMetric

Two birds with one stone: One-pot concurrent Ta-doping and -coating on Ni-rich LiNiCoMnO cathode materials with fiber-type microstructure and Li-conducting layer formation.

J Colloid Interface Sci

Battery Research Center of Green Energy, Ming Chi University of Technology, Taishan, New Taipei City 24301, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, Taishan, New Taipei City 24301, Taiwan; Department of Chemical and Materials Engineering & Center for Sustainability and Energy Technology, Chang Gung University, Taoyuan City 333, Taiwan. Electronic address:

Published: May 2024

A novel scalable Taylor-Couette reactor (TCR) synthesis method was employed to prepare Ta-modified LiNiCoMnO (T-NCM92) with different Ta contents. Through experiments and density functional theory (DFT) calculations, the phase and microstructure of Ta-modified NCM92 were analyzed, showing that Ta provides a bifunctional (doping and coating at one time) effect on LiNiCoMnO cathode material through a one-step synthesis process via a controlling suitable amount of Ta and Li-salt. Ta doping allows the tailoring of the microstructure, orientation, and morphology of the primary NCM92 particles, resulting in a needle-like shape with fine structures that considerably enhance Li ion diffusion and electrochemical charge/discharge stability. The Ta-based surface-coating layer effectively prevented microcrack formation and inhibited electrolyte decomposition and surface-side reactions during cycling, thereby significantly improving the electrochemical performance and long-term cycling stability of NCM92 cathodes. Our as-prepared NCM92 modified with 0.2 mol% Ta (i.e., T2-NCM92) exhibits outstanding cyclability, retaining 84.5 % capacity at 4.3 V, 78.3 % at 4.5 V, and 67.6 % at 45 ℃ after 200 cycles at 1C. Even under high-rate conditions (10C), T2-NCM92 demonstrated a remarkable capacity retention of 66.9 % after 100 cycles, with an initial discharge capacity of 157.6 mAh g. Thus, the Ta modification of Ni-rich NCM92 materials is a promising option for optimizing NCM cathode materials and enabling their use in real-world electric vehicle (EV) applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.01.094DOI Listing

Publication Analysis

Top Keywords

linicomno cathode
8
cathode materials
8
ncm92
5
birds stone
4
stone one-pot
4
one-pot concurrent
4
concurrent ta-doping
4
ta-doping -coating
4
-coating ni-rich
4
ni-rich linicomno
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!