Gallibacterium anatis is a Gram-negative bacterium found in the respiratory and genital tracts of various animals, primarily poultry. Its association with septicemia and high mortality in poultry, along with the rise in multidrug-resistant strains, has amplified concerns. Recent research uncovered significant variability in antibiotic resistance profiles among G. anatis isolates from different Austrian flocks, and even between different organs within the same bird. In response, in the present study 60 of these isolates were sequenced and a combination of comparative genomics and genome-wide association study (GWAS) analysis was applied to understand the genetic variability of G. anatis across flocks and organs and to identify genes related to antibiotic resistance. The results showed that each flock harbored one or two strains of G. anatis with only a few strains shared between flocks, demonstrating a great variability among flocks. We identified genes associated with resistance to nalidixic acid, trimethoprim, cefoxitin, tetracycline, ampicillin and sulfamethoxazole. Our findings revealed that G. anatis may develop antibiotic resistance through two mechanisms: single-nucleotide mutations and the presence of specific genes that confer resistance. Unexpectedly, some tetracycline-resistant isolates lacked all known tetracycline-associated genes, suggesting the involvement of novel mechanisms of tetracycline resistance that require additional exploration. Furthermore, our functional annotation of resistance genes highlighted the citric acid cycle pathway as a potential key modulator of antibiotic resistance in G. anatis. In summary, this study describes the first application of GWAS analysis to G. anatis and provides new insights into the acquisition of multidrug resistance in this important avian pathogen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetmic.2024.109995 | DOI Listing |
Environ Microbiol
January 2025
Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA.
Shotgun and proximity-ligation metagenomic sequencing were used to generate thousands of metagenome assembled genomes (MAGs) from the untreated wastewater, activated sludge bioreactors, and anaerobic digesters from two full-scale municipal wastewater treatment facilities. Analysis of the antibiotic resistance genes (ARGs) in the pool of contigs from the shotgun metagenomic sequences revealed significantly different relative abundances and types of ARGs in the untreated wastewaster compared to the activated sludge bioreactors or the anaerobic digesters (p < 0.05).
View Article and Find Full Text PDFCancers (Basel)
January 2025
Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy.
Background/objectives: Intrahepatic cholangiocarcinoma (iCCA) is a malignant liver tumor with a rising global incidence and poor prognosis, largely due to late-stage diagnosis and limited effective treatment options. Standard chemotherapy regimens, including cisplatin and gemcitabine, often fail because of the development of multidrug resistance (MDR), leaving patients with few alternative therapies. Doxycycline, a tetracycline antibiotic, has demonstrated antitumor effects across various cancers, influencing cancer cell viability, apoptosis, and stemness.
View Article and Find Full Text PDFNutrients
December 2024
Department of Food and Nutrition, Kyung Hee University, 26 Kyunghee-Daero, Dongdaemun-Gu, Seoul 02447, Republic of Korea.
Background/objectives: Type 2 diabetes mellitus (T2DM) is considered a serious risk to public health since its prevalence is rapidly increasing worldwide despite numerous therapeutics. Insulin resistance in T2DM contributes to chronic inflammation and other metabolic abnormalities that generate fat accumulation in the liver, eventually leading to the progression of metabolic dysfunction-associated fatty liver disease (MAFLD). Recently, the possibility that microbial-derived metabolites may alleviate MAFLD through enterohepatic circulation has emerged, but the underlying mechanism remains unclear.
View Article and Find Full Text PDFFoods
December 2024
College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
, a Gram-negative anaerobic bacterium colonizing the intestinal mucus layer, is regarded as a promising "next-generation probiotic". There is mounting evidence that diabetes and its complications are associated with disorders of abundance. Thus, and its components, including the outer membrane protein Amuc_1100, -derived extracellular vesicles (AmEVs), and the secreted proteins P9 and Amuc_1409, are systematically summarized with respect to mechanisms of action in diabetes mellitus.
View Article and Find Full Text PDFFoods
December 2024
Instituto de Ciencias de la Vid y del Vino (ICVV) (Universidad de La Rioja, Consejo Superior de Investigaciones Científicas (CSIC), Gobierno de La Rioja), 26007 Logroño, Spain.
The objectives of this study were to obtain and characterise polyphenolic extracts from red grape pomace of L. cv Graciano via conventional solvent extraction (SE) and green supercritical fluid extraction (SFE) and to evaluate their antibacterial activity against susceptible and multidrug-resistant strains of intestinal origin. The SE and SFE methods were optimised, and ultra-performance liquid chromatography/mass spectrometry (UPLC/QqQ-MS/MS) analysis revealed 38 phenolic compounds in the SE sample, with anthocyanins being the predominant polyphenols, and 21 phenolic compounds in the SFE samples, among which hydroxybenzoic acids and flavonols were the predominant compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!